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Developing a Wildfire Forecasting System for Hawai‘i
Summary

Wildfires in Hawai'i increasingly threaten both ecological integrity and human well-being,
prompting an urgent demand for accurate forecasting systems to support mitigation and
preparedness efforts. Extreme weather conditions, particularly short-term drought, have
frequently coincided with wildfire occurrences in recent years, offering valuable context
for wildfire probability forecasts. In Hawai'‘i, where flammable invasive grasses fuel rapid
fire spread, accurate forecasting is essential for protecting vulnerable ecosystems and
communities. This study introduces a hybrid deep learning framework that integrates
Convolutional Long Short-Term Memory (ConvLSTM) networks with attention
mechanisms, optimized by the Firefly Algorithm, to forecast wildfire probabilities across
Hawai‘i. The model uses an input sequence of wildfire probability maps from the previous
four days (t, t-1, t-2, and t—=3) and generates forecasts for the subsequent three days
(t+1, t+2, and t+3). The model shows good agreement with observed wildfire events. For
Honolulu County, the F1-scores are 0.7837, 0.7687, and 0.7651 for the 1-, 2-, and 3-day-
ahead forecasts, respectively. For Hawai‘i County, the corresponding values are 0.8182,
0.7781, and 0.7749. The model performs satisfactorily for Maui County, with F1-scores
of 0.8103, 0.7757, and 0.7785, and for Kaua'‘i County, with F1-scores of 0.8387, 0.8101,
and 0.7871. Validation against observed wildfire events demonstrates the model’s
robustness in identifying fire-prone areas. This agreement is further supported by weekly
drought classifications, which consistently shows that regions with higher predicted
probability experience abnormally dry to moderate drought conditions. This connection
indicates that the model responds well to short-term environmental stress that commonly
precedes wildfire activity. Overall, this framework demonstrates a feasible potential for
operational use in early warning systems, offering valuable insights for land managers,
emergency responders, and policymakers in fire-prone regions. The wildfire forecasting
system is available on the Hawai‘i Climate Data Portal (https://www.hawaii.edu/climate-
data-portal/data-portal/).

Keywords: Fire probability forecasting, ConvLSTM-Attention model, Firefly algorithm
optimization, Spatiotemporal modeling, Multi-day wildfire forecasting

Background

Wildfires, recognized as one of the most destructive natural disasters, pose significant
threats to ecosystems, human settlements, and economies worldwide (Hamadeh et al.,
2017; Hantson et al., 2015; Pilly Joseph Kagosi et al., 2020). Over the past two decades,
wildfires have caused extensive ecological and economic damage, driven by climate
change and human activities that disrupt natural ecosystems and alter fire cycles in
diverse regions, including island environments (Mass and Ovens, 2024; Rezaie et al.,
2023). According to Trauernicht et al. (2015), Hawai‘i’'s annual burned area between 2005
and 2011 averaged 8,427 hectares (0.48% of its land area), which was higher than the
proportion burned across the entire U.S. mainland (0.30%) and even exceeded the
average of 12 fire-prone western states, including Alaska (0.46%).



Over recent decades, Hawai‘i has experienced almost a fourfold increase in the total area
affected by wildland fires (Trauernicht, 2019). Although wildfires frequently ignite near
developed landscapes, most of the burned area occurs in dry, nonnative grasslands and
shrublands, which cover about 24% of the state (Trauernicht et al., 2015). These grass-
dominated ecosystems, combined with invasive species, prolonged drought, and
widespread land-use changes such as abandoned agricultural fields, create continuous
and highly flammable fuel beds. As fires spread rapidly through these landscapes and
advance toward forested watershed margins, they pose significant risks to native
ecosystems, watershed integrity, and community safety. This escalating threat highlights
the need for improved landscape-scale fire-risk assessment and stronger integration of
pre-fire planning and prevention in land management strategies (Marris, 2023;
Trauernicht, 2015; Trauernicht et al., 2015; Yelenik et al., 2024).

Several studies used historical fire records and long-term geo-environmental variables,
including topography, land cover, vegetation indices, and climatic factors to generate
wildfire susceptibility maps (Hai et al., 2023; Kalantar et al., 2020; Pandey et al., 2022).
These maps provide the probability of wildfire occurrence over long periods and are
therefore effective for identifying persistently high-risk areas over decadal scales. While
wildfire susceptibility maps are valuable for long-term planning and mitigation, they are
not suited for short-term early warning systems. To address this gap, Tran et al.
(2025) developed hybrid Hunger Games Search (HGS)-Random Forest (RF) and Moth-
Flame Optimization (MFO)—RF models to estimate high spatial-resolution (250 m x 250
m) near real-time daily wildfire probability for Hawai‘i. They used six conditioning factors
(rainfall, maximum air temperature, relative humidity, normalized difference vegetation
index, antecedent precipitation index, and land cover) as inputs to their models. The
output remains limited to near real-time probability maps estimates rather than near-
future forecasts, and therefore cannot describe how wildfire likelihood changes over the
next several days. It is evident that neither the long-term susceptibility maps nor the RF-
based near real-time probability estimates from Tran et al. (2025) address the operational
needs that require 1-3 day wildfire forecasting for proactive planning, early warnings, and
resource allocation. By supporting early detection and prevention, short-term wildfire
forecasting can help reduce wildfire impacts and strengthen community resilience,
making it an essential tool for mitigation and response strategies (McCaffrey, 2015;
Thompson et al., 2019).

Efforts to adapt mainland fire-danger systems to Hawai‘i have been limited by the state’s
sharp gradients in vegetation, climate, and topography, which differ substantially from the
continental conditions for which models like National Fire Danger Rating System
(NFDRS), FlamMap, and FARSITE were designed (Burgan et al., 1974; Fujioka et al.,
2000; Weise et al., 2010). More advanced ignition models developed for the
conterminous United States, including the RMRS 7-day ignition-forecasting system, rely
on long-term ignition records, coarse 20-km reanalysis grids, and monthly statistical
equations calibrated to mainland fire regimes
(https://research.fs.usda.gov/firelab/products/dataandtools/real-time-forecasting-wildfire-
ignitions-out-7-days). These characteristics make them unsuitable for Hawai‘i's fast-
drying grass fuels and highly localized microclimates. As a result, Hawai‘i continues to
depend on Red Flag Warnings (http://www.prh.noaa.gov/hnl/pages/firewx.php) derived
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from weather conditions at the Honolulu International Airport station, using thresholds for
the Keetch-Bayram Drought Index, relative humidity, and wind speed (Chu, 1995; Chu
et al., 2002; Dolling et al., 2009). As the Red Flag Warnings rely on weather data from a
single station, they do not capture spatial variations in fire risk across the islands.
Consequently, Red Flag Warnings may fail to be issued even under high-risk conditions
elsewhere. For example, no Red Flags Warnings were issued during the large fires on
Maui in 2019 and 2023. The absence of a spatially explicit system capable of capturing
statewide changes in fire likelihood remains a critical operational gap and underscores
the need for a forecasting framework tailored to Hawai‘i’'s rapidly evolving fire
environment.

The main objective of this study is to develop a near-future wildfire forecasting system for
the State of Hawai'i. This system is capable of forecasting wildfire probability 1-3 days
ahead at a spatial resolution of 250 m. To the end, wildfire probability maps from the
previous four days (generated by Tran et al. (2025)) are used as inputs to a hybrid deep
learning framework that integrates Convolutional Long Short-Term Memory (ConvLSTM)
networks with attention mechanisms, optimized by the Firefly Algorithm, to forecast
wildfire probabilities across Hawai'‘i. This study also addresses three research questions:
(a) What are the benefits and limitations of applying deep learning models to short-term
wildfire-probability forecasting? (b) How do attention-based methods improve the
performance of wildfire-forecasting models? and (c) How does incorporating wildfire
estimates from different number of previous days affect the performance of the wildfire
forecasting model?

To the best of our knowledge, this is the first study that forecasts daily wildfire probability
for Hawai‘i. This study contributes to the literature in several significant ways: 1) it
develops a novel ConvLSTM-based deep learning framework that generates short-term
(1-3 day) wildfire-probability forecasts, 2) it incorporates an attention mechanism to
strengthen temporal learning and improve forecast accuracy, 3) it evaluates the fire
forecasts against weekly drought conditions, 4) it applies the Firefly Algorithm to optimize
ConvLSTM hyperparameters, thereby improving forecasting accuracy, 5) it compares the
wildfire forecasts with the historical wildfire maps from Tran et al. (2025); and finally 6) it
compares the wildfire forecasts with reported wildfire events. The wildfire forecasting
system from this study offers a valuable tool for land-use planners, emergency
responders, and policymakers to mitigate wildfire impacts on Hawai‘i's communities and
ecosystems.

Data and preprocessing

Study area
The study area covers the State of Hawai‘i, which is comprised of four counties (i.e.,

seven islands): Honolulu, Maui, Kaua‘i, and Hawai‘i counties (Figure 1). The State of
Hawai‘i encompasses a land area of 16,635 km? with a resident population of 1.4 million.
Wildfire locations from 2002-2020 are indicated in Figure 1 with circles.

Hawai‘'s climate is primarily shaped by orographic precipitation, where moist
northeasterly trade winds bring significant precipitation to the windward sides of the
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islands' volcanic mountains, resulting in drier conditions on the leeward side (Giambelluca
et al., 2013). Mean annual precipitation varies widely, ranging from 264 mm to over 6400
mm (Tran et al., 2024), with a rainy season from November to April and a dry season
from May to October (Frazier and Giambelluca, 2017). Hawai'i's average annual
temperatures range modestly between 9°C and 23.8°C, but have shown a notable upward
trend since the mid-1970s, in line with the global warming trend (Giambelluca et al., 2008).
This temperature rise has led to changes in evapotranspiration and precipitation levels.
Relative humidity also varies across the islands, with annual averages between 60% and
86% (Tran et al., 2024). Under trade wind conditions, a distinct moisture transition occurs
between 1200 and 2400 m; below these elevations, the air is moist, while above, it
becomes dry. This difference is due to a temperature inversion within the moving trade
wind air (Blumenstock and Price, 1974).

Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing index
for evaluating vegetation density and overall ecosystem condition. Tran et al. (2025)
reported that mean annual NDVI values across Hawai‘i range from —0.2 to 0.8. Long-term
analyses by Madson et al. (2023) further show that NDVI has declined substantially
across the Hawaiian Islands between 1982 and 2019, with the most pronounced
reductions (244%) occurring on Lana‘i and Hawai'i Island.

Hawai‘i’s landscapes are incredibly diverse, with land cover types ranging from lowland
shrublands to high-elevation alpine areas. In recent years, changes in land use have been
driven by the decline of agriculture (Perroy et al., 2016), the growth of commercial forestry
(Ares and Fownes, 2000) and increasing housing development.

Tran et al. (2025) shows the distribution of three main types of vegetation/covers across
the state. Woody or coarse vegetation includes green dense woody vegetation that is
over 5 meters high. Grass cover refers to low-growing fine vegetation and green or dry
nonwoody herbaceous plants such as forbs, ferns, and graminoids. Bare earth includes
all areas without vegetation and encompasses a wide variety of soil series and ages found
across Hawai‘i, ranging from young bare lava flows to aged weathered oxisoils and
andisols (Lucas, 2017).

Observational records indicate a rapid increase in air temperature across Hawai‘i over
the past four decades (Giambelluca et al., 2008; Longman et al., 2019). As the state
continues to warm, wildfire frequency and total burned area have also increased and are
projected to rise further (Tran et al. 2025). This escalation in fire activity is driven largely
by the abandonment of agricultural lands, which has facilitated the expansion of fire-prone
invasive grasslands and shrublands that now occupy approximately 25% of Hawai‘i’s land
area (~800,000 hectares), coupled with declining resources and institutional support
historically available for firefighting (Trauernicht et al., 2015). Recent outcomes of these
landscape and climate changes include more than 17,000 acres burned on Maui in 2019,
the 2018 West O‘ahu fire complex (~4,500 acres), the West Maui fires during Hurricane
Lane in 2018—burning 23 homes and forcing evacuations—and the 2023 Maui wildfires,
which caused over 100 fatalities and destroyed or damaged roughly 3,000 structures,
marking the deadliest U.S. wildfire in more than a century.
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Figure 1. The selected study areas and recorded wildfire occurrences from 2002 to 2020.
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Figure 2. Annual area burned in the State of Hawai'i for 1904-2022.

Data description

In this study, we utilized historical daily wildfire probability estimates from Tran et al.
(2025). We incorporated these probabilities as input variables into developed models to
forecast fire probability 1, 2, and 3 days ahead (i.e., t+1, t+2, and t+3), where t represents
the current day. To determine the optimal input configuration (i.e., number of lags) for
accurate forecasting, we systematically tested three different configurations: a 2-day lag
(t, 1), a 3-day lag (t, t-1, t-2), and a 4-day lag (t, t-1, t-2, t-3). These lags represent the
days preceding the first forecast day (t+1), during which wildfire probability estimates from
Tran et al. (2025) were incorporated into developed models as predictive variables. This
approach enabled us to examine how different input lag lengths influence predictive
performance, ensuring that the model effectively captures the temporal evolution of
wildfire risk while reducing the potential for overfitting. By adjusting the input structure, we
aimed to enhance the model’s ability to learn from historical patterns and improve its
forecasting accuracy.

The wildfire probability forecasts from this study are evaluated against observed wildfire
occurrences in Hawai‘i. Wildfire records were obtained from the Honolulu Fire
Department, the Division of Forestry and Wildlife (DOFAW), Hawai‘i Wildfire Management
Organization (HWMO), and Hawai'‘i Volcanoes National Park (HVNP) for all four counties,
covering the period from January 1, 2002, to December 31, 2020. These records were
used for model validation, providing the ground-truth observations needed to assess
forecast performance through sensitivity, specificity, negative predictive value (NPV),
positive predictive value (PPV), the F1-score (the harmonic mean of sensitivity and
precision), and the area under the ROC curve (AUC) metrics. These wildfire records
contain comprehensive data on each incident, such as geographic location, burned area,
and the date of occurrence. To be consistent with Tran et al. (2025) and to ensure the
analysis concentrated on major wildfire events, only fire surpassing 8 acres in size were
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included. Consequently, the dataset comprises 292 fire events in Honolulu County, 188
in Hawai‘i County, 90 in Maui County, and 78 in Kaua‘i County between 2002 and 2020.

Drought Condition

Weekly drought classification data were obtained from the U.S. Drought Monitor
(https://droughtmonitor.unl.edu/CurrentMap.aspx), a collaborative product of the
University of Nebraska—Lincoln, USDA, and NOAA. The dataset provides spatially explicit
drought severity levels across the United States on a weekly basis, categorized into five
main drought intensity levels: DO (Abnormally Dry), indicating short-term dryness that may
precede or follow drought; D1 (Moderate Drought), involving some damage to crops and
pastures with developing water shortages; D2 (Severe Drought), reflecting likely crop or
pasture losses and the need for water restrictions; D3 (Extreme Drought), denoting major
agricultural losses and widespread water shortages; and D4 (Exceptional Drought),
representing severe, prolonged drought impacts that often require emergency responses
(Noel et al., 2020).

As daily drought records are unavailable, weekly data were utilized to identify the nearest
drought condition corresponding to forecasted fire-prone days. To classify drought
severity levels in this study, we adopted the drought categorization system based on the
Standard Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration
Index (SPEI), as summarized in Table 1. Each drought category was assigned a specific
color for mapping purposes to enhance visual interpretation.

Table 1. Drought severity categories based on SPI and SPEI values and associated
percentile ranges, color-coded for map visualization.

Category Description Example Percentile Range SPI/SPEI Values Range
None Normal or wet conditions 30.01 or above -0.49 or above
DO Abnormally Dry 20.01 to 30.00 -0.5t0-0.79
D1 Moderate Drought 10.01 to 20.00 -0.8t0 -1.29
D2 Severe Drought 5.01 to 10.00 -1.3t0-1.59
Extreme Drought 2.01t0 5.00 -1.6 t0 -1.99
Exceptional Drought 0.00 to 2.00 -2.0 or less
Methodology
ConvLSTM network

ConvLSTM, a variant of the traditional LSTM (Long Short-Term Memory) network,
incorporates convolutional operations into the standard LSTM architecture to effectively
capture both temporal and spatial dependencies in time series data (Shi et al., 2015).
This capability is particularly advantageous for wildfire forecasting, where both spatial
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patterns (e.g., topography, land cover type) and temporal sequences (e.g., weather data,
vegetation conditions) play a critical role in fire occurrences.

The core advantage of the ConvLSTM model lies in its ability to utilize memory cells for
input, forget, and output gates through convolutional operations rather than fully
connected layers, as in traditional LSTM networks (Moishin et al., 2021; Shi et al., 2015).
This allows the model to retain spatial information from multidimensional input data, such
as gridded weather datasets and vegetation indices, ensuring that relevant spatial
features are not lost during the forecasting process.

The ConvLSTM model handles the following gates through convolutional operations:

Forget Gate (ff): Determines the amount of information from the previous time step's
memory cell to be discarded.

Input Gate (i;): Controls how much new information from the current input will be added
to the memory cell.

Cell State Update (C;): Updates the memory cell state by combining the retained
information from the forget gate and the new information from the input gate.

Output Gate (0;): Determines how much of the updated cell state will be used to generate
the current output.

The equations governing these gates are given as follows (Shi et al., 2015):

fr=0WsxX,+Usxheq +VpxCo_q + by) (1)
ii=0cW;* X, +U;xhi_1+V;xC,_y + b)) (2)

Co =fi X Co_q + iy xtanh(W, * X, + U, * hy_qy + b,) (3)
op=0W, * X, +Uy*h,_y +V, xC,_y + b,) (4)

h; = o, X tanh(C,) (5)

where * denotes convolution and x the Hadamard product; X; and h; represent the input
and hidden state at time ¢ (with t-1 indicating the previous step); Wy, W;, W,, W, and Uy,
U;, U., U, are the convolutional kernels for input-to-state and hidden-to-state transitions;
Ve, Vi, Ve, V, are peephole connections from the cell state; and o denotes the sigmoid
activation function.

A key difference between ConvLSTM and traditional LSTM is the use of peephole
connections, where all gates have access to the previous memory cell content (C;_,),
even when the output gate is closed. This peephole connection ensures that the impact
of earlier inputs is preserved across long input sequences, which is crucial for accurately
capturing wildfire dynamics over time (Rahman and Siddiqui, 2019).



ConvL STM-Attention model

In 2014, a team from Google innovatively integrated the attention mechanism into a deep
learning recurrent neural network, yielding significant advancements in image
classification tasks (Mnih et al., 2014). This pioneering application marked the beginning
of widespread adoption of the attention mechanism in scholarly research across various
fields. Bahdanau et al. (2015) successfully applied the attention mechanism to natural
language processing, significantly enhancing translation algorithms. In 2017, Google's
research team introduced the Transformer encoder-decoder algorithm (Vaswani et al.,
2017), which exclusively utilized the self-attention mechanism. This approach departed
from the traditional recurrent and convolutional neural networks commonly employed in
deep learning. By leveraging the fundamental attributes of neural networks, the
transformer demonstrated exceptional performance across various natural language
processing tasks.

The attention mechanism is inspired by human visual attention, where the visual system
does not uniformly process an entire scene. Instead, it selectively focuses on specific
areas of interest within the scene. In essence, when an algorithm identifies that certain
information within a scene consistently correlates with the label, it learns to prioritize this
information in similar future scenarios, enhancing efficiency by focusing less on other
areas. This principle that underpins the ConvLSTM-Attention network structure is
depicted in Figure 3.
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Figure 3. Schematic of a ConvLSTM-Attention model.

In the ConvLSTM-Attention architecture, the Query (Q) represents the feature vector at
the current time step, while the Keys (K;, ..., K,;;) and Values (V4, ..., V) correspond to
spatial-temporal feature representations extracted from earlier ConvLSTM hidden states
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or from patches of the input sequence. The attention computation follows three main
steps: (1) the model first computes a similarity score between the query Q and each key
K,,, typically using dot-product or additive attention (Bahdanau et al., 2015); (2) these
similarity scores are then normalized through a softmax function to produce attention
weights that sum to one; and (3) the normalized weights are applied to the corresponding
value vectors 1},,, and a weighted summation is performed to obtain the final attention
output. In this formulation, each V,, represents the value vector associated with key K,,,
capturing encoded spatial-temporal information that the model selectively re-weights and
integrates to emphasize the most relevant regions or time steps for prediction.

The fundamental component of the attention mechanism involves a set of weight
parameters. These parameters are iteratively adjusted to learn the association strength
between each element in the sequence and the corresponding label. Based on this
learned correlation, the attention module then reallocates weights to the original inputs,
effectively reassigning importance to different parts of the input data. The attention
module is responsible for assigning weight parameters. By integrating this module,
different vectors in a sequence are allocated varying levels of attention, which reflects
their respective impacts on predicting current information. This inclusion of new
information significantly enhances the efficiency of network learning.

Firefly algorithm

The firefly algorithm (FA) is one of the most prominent swarm-based metaheuristic
algorithm, which was introduced by Yang (2009). It is built based on three rules: 1) fireflies
are attracted to each other regardless of gender; 2) attractiveness of fireflies is
proportional to their brightness, meaning that less bright fireflies move toward brighter
ones; and 3) the brightness is determined by evaluating the fithess function (Larabi Marie-
Sainte and Alalyani, 2020). The FA divides the population into subgroups during the
iterative optimization process, with each subgroup located near a local extremum in the
search space. This division facilitates the search for the global optimal solution and makes
the FA capable of solving non-linear and multi-model optimization problems (Nayak et al.,
2020). During the iterative optimization process, certain parameters of the FA can be
adjusted dynamically based on the optimization conditions, which can accelerate the
algorithm’s convergence speed. In the FA, every firefly is drawn towards any firefly
brighter than itself, which leads to a high convergence performance (Li et al., 2022). The
FA does not require a good initial solution and always results in the same optimal solution
regardless of the starting point. The readers are referred to Fister et al. (2013) for a
detailed description of the FA and its mathematical expressions.

Model assessment

The evaluation of wildfire forecasts from the developed models are conducted through a
two-step process. First, the forecasted wildfire probability maps for 1, 2, and 3 days ahead
were compared with the existing wildfire risk maps from Tran et al. (2025). This
comparative analysis utilized several statistical metrics widely used in predictive modeling
and error measurement. The coefficient of determination (R?) indicates the proportion of
variance in the reference data that is explained by the forecasts. Higher R? values reflect
better agreement between the wildfire probability forecasts from this study and the
historical estimates from Tran et al. (2025). Root Mean Squared Error (RMSE) provides
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a direct measure of the average forecasting error relative to the historical estimates. Mean
Squared Error (MSE) represents the average of the squared differences between the
forecasts (this study) and the historical estimates from Tran et al. (2025). Mean Absolute
Error (MAE) shows the average of the absolute differences between the forecasts and
historical estimates.

Following this initial validation, the wildfire forecasts underwent a further assessment
using historical wildfire events records from 2002 to 2020 to validate their robustness in
real-world scenarios. This phase focused on classification accuracy, utilizing metrics such
as Precision (Positive Predictive Value) and NPV to evaluate the model’s capability to
correctly classify wildfire and non-wildfire events (Umberger et al., 2017). Recall
(Sensitivity) and Specificity were computed to determine the model’s efficiency in
identifying both wildfires and non-wildfires events (Naidu et al., 2023). The AUC was
employed to assess the model's performance across various threshold levels, which is
important for applications in environments with imbalanced datasets (Hand, 2009).
Additionally, the F1 Score was calculated to provide a balanced measure of the model’s
precision and recall, offering a single metric that summarizes the model’s overall accuracy
in detecting wildfires (Wardhani et al., 2019). The equations for Sensitivity, Specificity,
PPV, NPV, and F1 Score are given by,

Sensitivity = i ©)
Y= TP+ FEN
... IN (7)
Specificity = FPTTN
TP (8)
PPV = Tp v Fp
TN 9)
NPV = enTTN
PPV X Sencitivity (10)

F1 =2x
score PPV + Sencitivity

where TP (true positive) represents the number of correctly identified wildfire pixels, TN
(true negative) denotes the number of correctly classified non-wildfire pixels, FP (false
positives) shows the number of non-wildfire pixels misclassified as wildfires, and FN (false
negatives) indicates the number of wildfire pixels incorrectly classified as non-wildfires.

Through these comprehensive assessment phases, our study not only compares the
wildfire forecast maps against historical estimates from Tran et al. (2025), but also
evaluate them using historical wildfire records, ensuring their value for wildfire
management and response strategies.

Results

Model tuning
To improve the performance of the ConvLSTM and ConvLSTM-Attention models, we
applied the Firefly Algorithm to systematically search for the optimal hyperparameter
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configurations. This approach enabled efficient tuning by exploring a wide range of
possible hyperparameter values while avoiding local optima, ensuring improved model
convergence and predictive accuracy. Table 2 summarizes the optimized
hyperparameters obtained by the Firefly Algorithm. The tuning process focused on
selecting the optimal number of filters, kernel sizes, activation functions, and batch
normalization settings, as well as determining the most effective learning rate for the
Adam optimizer. The Firefly Algorithm identified a set of hyperparameters that minimized
the mean squared error (MSE) and improved the classification performance, particularly
the F1-score.

A key observation from the tuning process was that the ConvLSTM-Attention model
required fewer filters than the standard ConvLSTM model, as the attention mechanism
effectively prioritized critical spatial-temporal features, reducing the need for additional
feature-extraction layers. Additionally, the Firefly Algorithm identified that a kernel size of
3x3 in the ConvLSTM layers provided the best balance between computational efficiency
and predictive accuracy. By using the Firefly Algorithm for hyperparameter selection, we
achieved improved model generalization and faster convergence, ensuring the
robustness of wildfire probability forecasting across the State of Hawai'‘i. The detailed
hyperparameter settings and optimization results are provided in Table 2.

Table 2. Optimized hyperparameters for the ConvLSTM-Attention model.

Hyperparameter Value Description
Number of ConvLSTM > Two stacked ConvLSTM layers for
Layers spatiotemporal encoding
. Number of filters in first and second
Filters (Layers 1 & 2) 128, 64 ConvLSTM layers
Kernel Size . .
(ConvLSTM) 3x3 Size of the convolutional kernel

Tanh (ConvLSTM), Sigmoid
Activation Function (Final), Nonlinearities applied in different model
components

Softmax (Attention)

Whether to return full sequences or final

Return Sequences

TRUE (L1), FALSE (L2)

outputs

Attention Mechanism

Multi-head

Spatial-channel attention applied between
layers

Attention Kernel Size

(1x1x1)

Kernel size for attention computation
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Batch Normalization Applied (after each layer) Stabilizes tralmng apd improves

generalization

Optimizer Adam Adaptive moment estimation for training

Learning Rate 0.001 Initial learning rate for the optimizer

Loss Function Mean Squared Error (MSE) Measures difference between predicted
and true values

Output Channels 3 Number of OutpL;t channels for multi-day

orecast
Inpuigsgﬁwence 4 days Number of previous days used as input

Evaluation of Forecasted Wildfire Maps

In this study, wildfire probability maps were forecasted for Honolulu, Maui, Hawai‘i, and
Kaua'i counties using the ConvLSTM and ConvLSTM-Attention models. To evaluate the
impact of temporal dependencies on predictive performance, we applied three different
lag configurations: 2-, 3-, and 4-day lags. These configurations allowed for a comparative
assessment of how varying lag lengths influence the accuracy of wildfire risk forecasting.
These forecasts illustrate the model’s ability to identify high-risk areas across different
time horizons and to simulate the spatial and temporal evolution of wildfire risk. The
following subsections provide a detailed analysis of wildfire risk forecasting for each
county, highlighting key fire-prone regions and evaluating the model’s ability to detect fire
occurrences.

Honolulu County

The forecasted wildfire maps for 1, 2, and 3 days ahead are compared with the historical
wildfire probability maps from Tran et al. (2025) for Honolulu County, using 2-, 3-, and 4-
day lags (Table 3). The results for the 3- and 4-day lags are very close and better than
the 2-day lag configuration. Both the ConvLSTM and ConvLSTM-Attention models
achieved high R? values, and low RMSE and MAE across all forecast horizons. The
ConvLSTM model reached R? values between 0.9462 and 0.9629, with RMSE ranging
from 0.0374 t0 0.0452, and MAE from 0.0169 to 0.0212. These values show strong spatial
agreement between the 1- to 3-day forecasts and the historical wildfire probability maps
from Tran et al. (2025). The ConvLSTM-Attention model obtained R?, RMSE, and MAE
values that were very close to those of the ConvLSTM model, with RMSE and MAE
improving by about 3% to 5% in several configurations. This suggests that the attention
mechanism enhances the model’s sensitivity to changes in wildfire probability by re-
weighting the most informative features. Overall, these results indicate that the forecasts
for Honolulu County aligned well with the historical wildfire probability patterns across the
1- to 3-day lead times.

The spatial comparisons for March 29, March 30, and April 4, 2021 are shown in Figures
4, 5, and 6, respectively, with the forecasted wildfire probability maps in the top row, the
Tran et al. (2025) maps in the middle row, and the absolute misfit in the bottom row.
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These figures show strong agreement between our forecasts and the historical wildfire
probability maps across the 1-, 2-, and 3-day lead times. Tran et al. (2025) identified
higher wildfire probabilities in the south, west, southeast, and northwest of Honolulu
County during these dates, and these patterns are consistently captured in our forecasts.
Probabilities close to 0 and 1 indicate low and high wildfire likelihoods, respectively. In
the 1-day-ahead forecast (Figure 4), misfit values remain very low across the county,
generally below 0.05. The 2-day-ahead forecast (Figure 5) shows a modest increase in
misfit in parts of the western region, and the 3-day-ahead forecast (Figure 6) displays the
largest differences. Even with these increases, most misfit values remain below 0.1
across Honolulu County. These spatial results agree with the numerical metrics, with
RMSE values across the three selected dates ranging from 0.033 to 0.042 for the 1-day
forecasts, 0.050 to 0.062 for the 2-day forecasts, and 0.057 to 0.075 for the 3-day
forecasts.

Table 3. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead
with the historical wildfire probability maps from Tran et al. (2025) for Honolulu County.

R? RMSE MAE
County Model Configuration

1day |2days|3days| 1day [2days| 3days | 1day |2days| 3 days

2-day-lag |0.9586|0.9491|0.9462| 0.0395 [0.0439| 0.0452 | 0.0183|0.0208| 0.0212

ConvLSTM | 3-day-lag |0.9628|0.9555|0.9548|0.0374 {0.0411| 0.0414 |0.0187|0.0204 | 0.0207

4-day-lag [0.9629(0.9537(0.9529| 0.0374|0.0419| 0.0423 |0.0169|0.0193| 0.0193
Honolulu

2-day-lag |0.9611|0.9561|0.9544 | 0.0381 |0.0408| 0.0415 {0.0171{0.0189| 0.0192

ConvLSTM-

A . 3-day-lag |0.9630|0.9578|0.9562 | 0.0372 |0.0399| 0.0405 | 0.0168 |0.0184 | 0.0187
ttention

4-day-lag |0.9624|0.9573|0.9557 | 0.0376 |0.0402| 0.0410 |0.0179]0.0193 | 0.0196
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Figure 4. (Top row) 1-day-ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates

from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for three sample days in
Honolulu County.
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Figure 5. (Top row) 2-day-ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for three sample days in
Honolulu County.
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Figure 6. (Top row) 3-day-ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for three sample days in
Honolulu County.

Moreover, the performance of the ConvLSTM and ConvLSTM-Attention models is
evaluated against historical wildfire records (Table 4). The ConvLSTM model shows
consistent performance across the three forecast horizons. For the 1-day forecasts,
sensitivity ranges from 0.7103 to 0.7345, specificity from 0.8138 to 0.8241, NPV from
0.7399 t0 0.7532, PPV from 0.7948 to 0.8016, F1-scores from 0.7532 to 0.7634, and AUC
values from 0.8250 to 0.8288. For the 2-day forecasts, sensitivity ranges from 0.7138 to
0.7345, specificity from 0.8103 to 0.8138, NPV from 0.7398 to 0.7540, PPV from 0.7931
to 0.7978, F1-scores from 0.7514 to 0.7648, and AUC from 0.8209 to 0.8282. For the 3-
day forecasts, sensitivity ranges from 0.6662 to 0.7276, specificity from 0.8138 to 0.8207,
NPV from 0.7217 to 0.7492, PPV from 0.7766 to 0.7992, F1-scores from 0.7330 to
0.7604, and AUC from 0.8195 to 0.8273.

Among the two models, the ConvLSTM-Attention model with a 4-day input lag
demonstrates the closest correspondence with the observed wildfire records. For the 1-
day-ahead forecasts, this configuration yields high scores across all metrics (sensitivity =
0.7310, specificity = 0.8655, NPV = 0.7629, PPV = 0.8446, F1-score = 0.7837, and AUC
= 0.8544), including the highest PPV and AUC among all configurations. For the 2- and
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3-day-ahead forecasts, the 4-day-lag ConvLSTM-Attention model attains the highest
sensitivity (0.7448 and 0.7414), NPV (0.7597 and 0.7565), F1-scores (0.7687 and
0.7651), and AUC values (0.8302 and 0.8304), demonstrating stronger predictive
performance at the longer forecast horizons compared with the other models. Using the
4-day input lag, the ConvLSTM-Attention model shows consistent overall improvement
when compared with the ConvLSTM model across most evaluation metrics. Although
individual lead times show minor reductions in specificity and PPV, the average change
across the 1-, 2-, and 3-day forecasts indicates increases of 2.58% in sensitivity, 1.29%
in specificity, 2.00% in NPV, 1.76% in PPV, 2.14% in F1-score, and 1.31% in AUC. These
gains indicate that the 4-day-lag ConvLSTM-Attention configuration provides the most

accurate wildfire detection for Honolulu County.

Table 4. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead
with the wildfire records for Honolulu County.

Metric Lead time ConvLSTM ConvLSTM-Attention
indices (day) 2-day-lag | 3-day-lag | 4-day-lag | 2-day-lag | 3-day-lag | 4-day-lag
1 0.7103 0.7276 0.7345 0.7000 0.7448 0.7310
Sensitivity 2 0.7310 0.7345 0.7138 0.7034 0.7345 0.7448
3 0.6662 0.7276 0.7138 0.7034 0.7310 0.7414
1 0.8241 0.8138 0.8103 0.8690 0.8483 0.8655
Specificity 2 0.8103 0.8138 0.8138 0.8172 0.8172 0.8069
3 0.8138 0.8138 0.8207 0.8172 0.8138 0.8034
1 0.7399 0.7492 0.7532 0.7434 0.7688 0.7629
NPV 2 0.7508 0.7540 0.7398 0.7337 0.7548 0.7597
3 0.7217 0.7492 0.7414 0.7337 0.7516 0.7565
1 0.8016 0.7962 0.7948 0.8423 0.8308 0.8446
PPV 2 0.7940 0.7978 0.7931 0.7938 0.8008 0.7941
3 0.7766 0.7962 0.7992 0.7938 0.7970 0.7904
1 0.7532 0.7604 0.7634 0.7646 0.7855 0.7837
F1-score
2 0.7612 0.7648 0.7514 0.7459 0.7662 0.7687
3 0.7330 0.7604 0.7541 0.7459 0.7626 0.7651
AUC 1 0.8250 0.8288 0.8284 0.8500 0.8519 0.8544
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2 0.8209 0.8282 0.8268 0.8260 0.8276 0.8302

3 0.8195 0.8273 0.8272 0.8260 0.8284 0.8304

Maui County

The forecasted wildfire probability maps for 1, 2, and 3 days ahead are compared with
the historical wildfire probability maps from Tran et al. (2025) for Maui County in Table 5.
The ConvLSTM and ConvLSTM-Attention models show almost identical performance for
the 1- and 2-day forecasts, with both models reaching R? values above ~0.95 and RMSE
values around 0.04-0.05. For the 3-day forecasts, the ConvLSTM-Attention model with
the 4-day-lag configuration performs best, reducing RMSE by approximately 10%
compared to the corresponding ConvLSTM configuration (0.0454 vs. 0.0503). Based on
this improvement, the ConvLSTM-Attention model with 4-day-lag was selected as the
preferred model. Overall, the models maintain good agreement with the historical wildfire
probability maps from Tran et al. (2025).

The spatial comparisons for March 27, April 1, April 4, and April 30, 2021 are shown in
Figures 7, 8, and 9, with the ConvLSTM-Attention forecasted wildfire probability maps in
the top row, the Tran et al. (2025) maps in the middle row, and the absolute misfit in the
bottom row. These figures illustrate the close agreement between the wildfire probability
forecasts and historical wildfire probability estimates across Maui County. Tran et al.
(2025) indicated higher wildfire probability across the central valley and the leeward
regions of Maui Island, as well as in several areas on Lana‘i, Moloka'i, and Kaho‘olawe,
and these spatial patterns are captured fairly well in the forecasts. For the 1-day-ahead
forecasts (Figure 7), three of the four dates show strong agreement, with R? values
between 0.919 and 0.968 and RMSE values between 0.044 and 0.062, while the April 1
case exhibits weaker performance (R? = 0.830, RMSE = 0.090), reflecting noticeable
mismatches on Moloka'i and Kaho‘olawe. The 2-day-ahead forecasts (Figure 8) show a
similar pattern: March 27, April 4 (in most areas), and April 30 align well with the historical
maps (R? between 0.692 and 0.896; RMSE between 0.083 and 0.120), but the April 1
forecast shows substantially lower agreement (R? = 0.343; RMSE = 0.177). The 3-day-
ahead forecasts (Figure 9) remain consistent on March 27, April 4, and April 30 (R?
between 0.617 and 0.834; RMSE between 0.094 and 0.134), while showing a weak
agreement on April 1 (R* = 0.288; RMSE = 0.184). Aside from April 1, the misfit values
are mostly below 0.15, indicating small spatial differences between the forecasted and
historical probability maps. Despite the weak performance on April 1, the forecasts for the
other three dates maintain low misfit values and reproduce the main wildfire-prone areas
identified by Tran et al. (2025). RMSEs across the four selected dates range from 0.044
to 0.090 for the 1-day forecasts, 0.080 to 0.177 for the 2-day forecasts, and 0.094 to 0.184
for the 3-day forecasts. Despite the weak performance on April 1, the forecasts for the
other three dates maintain low misfit values and reproduce the main wildfire-prone areas
identified by Tran et al. (2025).
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Table 5. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead

with the historical wildfire probability maps from Tran et al. (2025) for Maui County.

R? RMSE MAE

County Model Configuration
1day |2days|3days| 1day | 2days | 3days | 1day | 2 days | 3 days
2-day-lag |0.9574|0.9519|0.9496 | 0.0434 | 0.0461 | 0.0472 |0.0170| 0.0179 | 0.0178
ConvLSTM | 3-day-lag |0.9625|0.9568|0.9530| 0.0408 | 0.0437 | 0.0456 |0.0166| 0.0176 | 0.0184
4-day-lag [0.9603|0.9496|0.9428| 0.0419 | 0.0472 | 0.0503 |0.0149| 0.0170 | 0.0183
e 2-day-lag |0.9597|0.9542|0.9500| 0.0423 | 0.0450 | 0.0470 |0.0171| 0.0178 | 0.0192
Cz?t\él;]?ghﬂ' 3-day-lag |0.9597|0.9493|0.9404 | 0.0422 | 0.0473 | 0.0513 |0.0165| 0.0186 | 0.0204
4-day-lag [0.9586|0.9558|0.9533| 0.0428 | 0.0442 | 0.0454 |0.0186| 0.0191 | 0.0196
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Figure 7. (Top row) 1-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for four sample days in
Maui County.
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Maui County.
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from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for four sample days in
Maui County

Table 6 summarizes how the wildfire probability forecasts from the ConvLSTM and
ConvLSTM-Attention models correspond to the wildfire events in Maui County during the
testing phase. The ConvLSTM model shows sensitivity of 0.8000-0.8667, specificity of
0.6444-0.7111, NPV of 0.7805-0.8286, PPV of 0.6347-0.7264, F1-scores of 0.7551—
0.7897, and AUC of 0.8108-0.8312 across the 1-, 2-, and 3-day forecasts for the three
input configurations. The ConvLSTM-Attention model with a 4-day input lag provides the
strongest overall agreement with the wildfire records, with the highest sensitivity values
(0.8667-0.8778) and consistently high NPV and F1-scores (0.8209-0.8533 and 0.7757—
0.8103), supported by AUC values of 0.8295—-0.8731. These results indicate that adding
attention improves wildfire detection capability for Maui, particularly at longer lead times
where the ConvLSTM models show reduced performance. For the 4-day input lag, the
ConvLSTM-Attention model increases sensitivity by 1.3-8.3%, specificity by 0-10.3%,
NPV by 3.0-5.2%, PPV by 6.1-8.8%, F1-score by 0.9-3.9%, and AUC by 2.1-5.0%
across the 1-, 2-, and 3-day forecasts compared to the ConvLSTM model.
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Table 6. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-days ahead
with the wildfire records for Maui County.

Metric Lead time ConvLSTM ConvLSTM-Attention
indices (day) 2-day-lag | 3-day-lag | 4-day-lag | 2-day-lag | 3-day-lag | 4-day-lag

1 0.8556 0.8222 0.8667 0.8333 0.8444 0.8778

Sensitivity 2 0.8556 0.8222 0.8222 0.8333 0.8778 0.8778
3 0.8556 0.8222 0.8000 0.8333 0.9000 0.8667

1 0.6778 0.6667 0.6444 0.7778 0.7444 0.7111

Specificity 2 0.6556 0.6444 0.7011 0.6667 0.6667 0.7067
3 0.6889 0.6444 0.7111 0.6556 0.5556 0.7111

1 0.8243 0.7895 0.8286 0.8235 0.8272 0.8533

NPV 2 0.8194 0.7838 0.8000 0.8000 0.8226 0.8308

3 0.8267 0.7838 0.7805 0.8194 0.8475 0.8209

1 0.7264 0.7115 0.7091 0.7895 0.7677 0.7524

PPV 2 0.7130 0.6781 0.6400 0.7143 0.6695 0.6870

3 0.7033 0.6681 0.6347 0.7130 0.6694 0.6903

1 0.7857 0.7629 0.7800 0.8108 0.8042 0.8103

F1-score 2 0.7678 0.7551 0.7689 0.7692 0.7596 0.7757
3 0.7897 0.7551 0.7640 0.7678 0.7678 0.7785

1 0.8260 0.8221 0.8312 0.8538 0.8638 0.8731

AUC 2 0.8108 0.8221 0.8135 0.8148 0.8128 0.8310

3 0.8248 0.8247 0.8127 0.8167 0.8130 0.8295

Hawai'i County

The forecasted wildfire probability maps for 1, 2, and 3 days ahead are compared with
the historical wildfire probability maps from Tran et al. (2025) for Hawai‘i County in Table
7. The results show that both the ConvLSTM and ConvLSTM-Attention models achieved
strong performance across all forecast horizons, with R? values above 0.88 for 1-day and
2-day forecasts and above 0.87 for the 3-day forecasts. The ConvLSTM-Attention model
achieved R? values between 0.8840 and 0.9148 across the 2-, 3-, and 4-day lag
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configurations, with RMSE ranging from 0.0631 to 0.0737 and MAE from 0.0297 to
0.0359. The 4-day-lag configuration performed best, reducing RMSE by 3.7%, 5.6%, and
5.2% for the 1-, 2-, and 3-day forecasts, respectively, when compared with the 2-day-lag
model, and by 3.8%, 5.8%, and 5.4% for the same forecast horizons when compared with
the 3-day-lag model. The corresponding MAE values were also lower, decreasing by
0.7%, 4.4%, and 3.1% for the 1-, 2-, and 3-day forecasts relative to the 2-day-lag model,
and by 0.7%, 1.8%, and 0.6% when compared with the 3-day-lag model, indicating
improved agreement with the historical wildfire probability maps. The ConvLSTM model
showed a similar pattern, with the 4-day-lag configuration yielding the lowest RMSEs of
0.0633, 0.0682, and 0.0704 for respectively 1-, 2-, and 3-day ahead, further supporting
the benefit of incorporating longer input sequences. Based on these improvements, the
ConvLSTM-Attention model with a 4-day input lag was selected as the best-performing
configuration.

The spatial comparisons for the selected dates (March 31, April 5, April 8, and April 15,
2021) are presented in Figures 10, 11, and 12, where the top row contains the forecasted
wildfire probability, the middle row contains the wildfire probability map from the Tran et
al. (2025) study, and the bottom row contains the absolute misfit between the forecasted
and historical wildfire probability. These figures show that the ConvLSTM-Attention model
with a 4-day lag represents the distribution of wildfire probability across Hawai‘i County
well for the 1-, 2-, and 3-day forecasts. Tran et al. (2025) indicated higher wildfire
probability in the northwestern, southern, and southeastern parts of the island on these
dates, and these areas are well captured in the 1-, 2-, and 3-day forecasts. Figures 10,
11, and 12 indicate a clear increase in misfit as the forecast lead time extends from 1 to
3 days. April 8 presents the largest differences, particularly in the 3-day-ahead forecasts.
Despite this increase, the misfit remains predominantly below 0.15, indicating relatively
small differences compared with the wildfire-probability maps produced by Tran et al.
(2025). The metrics support this agreement: R? values for the 1-day forecasts (Figure 10)
range from 0.945 to 0.982, with RMSE between 0.031 and 0.046 and MAE between 0.024
and 0.036. For the 2-day forecasts (Figure 11), R? ranges from 0.761 to 0.886, RMSE
from 0.078 to 0.097, and MAE from 0.056 to 0.073, while the 3-day forecasts (Figure 12)
yield R? values between 0.728 and 0.875, RMSE from 0.081 to 0.103, and MAE from
0.060 to 0.078. These values show that the forecasts for Hawai‘i County match the
wildfire-probability maps from the Tran et al. (2025) study across most dates, with
reduced agreement only on April 8.
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Table 7. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead
with the historical wildfire probability maps from Tran et al. (2025) for Hawai‘i County.

R? RMSE MAE
County Model Configuration

1day |2days|3days| 1day | 2days | 3days | 1day | 2days | 3 days

2-day-lag | 0.8957 |0.8816|0.8748|0.0698 | 0.0744 | 0.0765 | 0.0338 | 0.0373 | 0.0390

ConvLSTM | 3-day-lag | 0.9120 {0.8997|0.8928 |0.0641| 0.0685 | 0.0708 | 0.0295 | 0.0329 | 0.0343

4-day-lag | 0.9143|0.9007|0.8942|0.0633| 0.0682 | 0.0704 | 0.0351 | 0.0379 | 0.0394
Hawai'i

2-day-lag | 0.9083 |0.8906|0.8840|0.0655| 0.0716 | 0.0737 | 0.0299 | 0.0344 | 0.0359

ConvLSTM-

Attenti 3-day-lag | 0.9139 {0.8987|0.8913|0.0635| 0.0689 | 0.0713 | 0.0299 | 0.0335 | 0.0350
ention

4-day-lag | 0.9148 |0.9023|0.8957 |0.0631| 0.0676 | 0.0699 | 0.0297 | 0.0329 | 0.0348
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Figure 10. (Top row) 1-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for four sample days in Hawai i
County.
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Figure 11. (Top row) 2-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for four sample days in Hawai'i
County.
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Figure 12. (Top row) 3-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for four sample days in Hawai‘i
County.

Table 8 summarizes the correspondence between the forecasted wildfire probability
maps and the observed wildfire occurrence during the testing phase for Hawai‘i County
across the 1-, 2-, and 3-day lead times. The ConvLSTM model shows sensitivity of
0.7181-0.7871, specificity of 0.7606-0.8191, NPV of 0.7424-0.7814, PPV of 0.7668—
0.7988, F1-scores of 0.7486-0.7769, and AUC of 0.8265-0.8353 across the 1-, 2-, and
3-day forecast horizons. Among the tested configurations, the ConvLSTM-Attention
model with a 4-day input lag provides the strongest agreement with the wildfire records,
offering the highest sensitivity values across all lead times (0.7872-0.8138) and
consistently high NPV and F1-score values (0.7802-0.8158 and 0.7849-0.8226), along
with AUC of 0.8286-0.8636 across the 1-, 2-, and 3-day lead times. These results indicate
that integrating attention mechanisms improves wildfire detection capability for Hawai'i
County.

Across the forecast horizons, the 4-day-lag ConvLSTM-Attention model improves several
key wildfire-identification metrics relative to the 4-day-lag ConvLSTM model. For the 1-
day-ahead forecasts, sensitivity, specificity, NPV, PPV, F1-score, and AUC increased by
3.4%, 8.4%, 4.4%, 7.3%, 5.3%, and 3.8%, respectively. For the 2-day-ahead forecasts,
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sensitivity, NPV, and F1-score increased by 5.7%, 3.5%, and 2.1%. For the 3-day-ahead
forecasts, the same configuration increased sensitivity by 7.2%, NPV by 4.4%, and F1-
score by 2.8%. These improvements highlight the contribution of the attention mechanism
in strengthening wildfire detection across Hawai‘i County, especially at 1- and 3-day lead
times where early identification is most critical for operational preparedness and
response. These results show that although forecast accuracy decreases with longer lead
times, the model maintains strong predictive capability and remains suitable for
supporting wildfire early warning and risk management efforts on Hawai'i Island.

Table 8. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-days ahead
with the wildfire records for Hawai‘i County.

Model ConvLSTM ConvLSTM-Attention
Metric indices Le(a:jdaggne 2-day-lag 3-day-lag 4-day-lag 2-day-lag 3-day-lag 4-day-lag
1 0.7553 0.7766 0.7872 0.7979 0.7926 0.8138
Sensitivity 2 0.7287 0.7553 0.75 0.7606 0.7606 0.7926
3 0.7181 0.7287 0.734 0.7553 0.7606 0.7872
1 0.7979 0.7766 0.7606 0.8457 0.8351 0.8245
Specificity 2 0.8138 0.7766 0.7819 0.7819 0.766 0.7553
3 0.8191 0.7819 0.7872 0.7766 0.766 0.7553
1 0.7653 0.7766 0.7814 0.8071 0.801 0.8158
NPV 2 0.75 0.7604 0.7577 0.7656 0.7619 0.7845
3 0.744 0.7424 0.7475 0.7577 0.7619 0.7802
1 0.7889 0.7766 0.7668 0.838 0.8278 0.8226
PPV 2 0.7965 0.7717 0.7747 0.7772 0.7647 0.7641
3 0.7988 0.7697 0.7753 0.7647 0.7647 0.7629
1 0.7717 0.7766 0.7769 0.8174 0.8098 0.8182
F1-score
2 0.7611 0.7634 0.7622 0.7688 0.7627 0.7781
3 0.7563 0.7486 0.7541 0.7596 0.7627 0.7749
1 0.8306 0.8353 0.8325 0.8599 0.8648 0.8639
AUC
2 0.8286 0.8323 0.8269 0.8293 0.8292 0.8283
3 0.8267 0.8328 0.8265 0.8291 0.8292 0.8286
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Kaua'i County

Table 9 summarizes the comparison between the 1-, 2-, and 3-day wildfire probability
forecasts and the wildfire probability maps from Tran et al. (2025) for Kaua‘i County.
Across different input-lag configurations, the ConvLSTM and ConvLSTM-Attention
models reach R? values mostly above 0.84, with RMSE values between 0.0664 and
0.0832. For Kaua'i County, the ConvLSTM-Attention model with a 4-day input lag
produces the highest R? values—0.8944, 0.8894, and 0.8841 for the 1-, 2-, and 3-day
forecasts. This configuration also yields the lowest RMSE (0.0664—0.0700). The 4-day-
lag model shows RMSE reductions of 7.1%, 9.7%, and 8.0% for the 1-, 2-, and 3-day
forecasts when compared with the 2-day-lag configuration, and reductions of 19.4%,
15.1%, and 15.9% when compared with the 3-day-lag configuration. For all three lead
times, the 4-day-lag ConvLSTM-Attention model yields lower MAE values than the 4-day-
lag ConvLSTM, with reductions of 4.27%, 7.27%, and 6.92% for the 1-, 2-, and 3-day
forecasts, respectively. These comparisons show that the 4-day-lag ConvLSTM-Attention
model provides the closest agreement with the wildfire probability estimates from Tran et
al. (2025).

Figures 13, 14, and 15 present the spatial comparison for the selected dates (March 27,
April 8, April 23, and June 25, 2021). In each figure, the top row contains the forecasted
wildfire probability from the 4-day-lag ConvLSTM-Attention model for the corresponding
lead time, the middle row contains the wildfire probability maps from Tran et al. (2025),
and the bottom row contains the absolute misfit between the forecasted and historical
wildfire probability. The Tran et al. (2025) maps indicate the highest wildfire probability in
the western and northeastern parts of Kaua‘i, and our forecasts show strong agreement
with these regions of higher wildfire probability. Figure 13, which presents the 1-day-
ahead forecasts, shows low misfit across most of the island (R? = 0.950-0.971; RMSE =
0.032-0.046). Figure 14 presents the 2-day-ahead forecasts and shows larger
differences—particularly on April 8 for which the misfit increases substantially (R?
decreases to 0.260; RMSE increases to 0.122). Figure 15 indicates that the 3-day-ahead
forecasts have higher misfit relative to shorter lead times. The forecasts span R? values
from 0.243 with an RMSE of 0.123 on April 8 to 0.867 with an RMSE of 0.070 on June
25, reflecting the expected decrease in accuracy at longer horizons. Misfit values remain
mostly below 0.2, and the high R? values for March 27, April 23, and June 25 (0.749,
0.880, and 0.867 respectively) for 3-day-ahead forecasts confirm strong agreement
between the forecasts and the wildfire probability maps from Tran et al. (2025).
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Table 9. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead
with the historical wildfire maps from Tran et al. (2025) for Kaua'‘i County.

R? RMSE MAE
County Model |Configuration

1day |2days |3 days| 1day |2 days|3days| 1day |2days| 3 days

2-day-lag |0.8803|0.8661|0.8635|0.0707|0.0750|0.0759|0.0431|0.0466 | 0.0471

ConvLSTM | 3-day-lag |0.8434|0.8391|0.8373|0.0809|0.0823|0.08300.0682|0.0680 | 0.0679

4-day-lag |0.8656|0.8423|0.8360|0.0749|0.0815|0.0832|0.0468 |0.0495| 0.0506
Kaua'i

2-day-lag |0.8778|0.8646|0.8631|0.0715|0.0755|0.0761|{0.0381|0.0405| 0.0412

ConvLSTM-

Attenti 3-day-lag |0.8375|0.8466|0.8364 |0.0824 |0.0803|0.0832|0.0500|0.0498| 0.0523
ention

4-day-lag |0.8944|0.8894|0.8841|0.0664 |0.0682|0.0700|0.0448 |0.0459| 0.0471
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Figure 13. (Top row) 1-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the misfit between the top and middle rows for four sample days in Kaua‘i
County.
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Figure 14. (Top row) 2-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Tran et al. (2025), and (bottom row) the misfit between the top and middle rows for four sample days in Kaua‘i
County.
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Figure 15. (Top row) 3-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates
from Trang et al. (2025), and (bottom row) the misfit between the top and middle rows for four sample days in Kaua‘i County.

Table 10 summarizes the correspondence between the ConvLSTM and ConvLSTM-
Attention forecasts and the observed wildfire occurrence during the testing phase for
Kaua'i County across the 1-, 2-, and 3-day lead times. The ConvLSTM model shows
sensitivity values of 0.6410-0.8077, specificity of 0.8205-0.8974, NPV of 0.7143-0.8101,
PPV of 0.8108-0.8621, F1-scores of 0.7353-0.8129, and AUC of 0.8537-0.8729 across
the 1-3 days forecasts. Among the two models, the ConvLSTM-Attention model with a 4-
day input lag provides the strongest correspondence with the wildfire probability records,
with the highest sensitivity values across all lead times (0.7821-0.8333) and consistently
high F1-score and AUC values (0.7871-0.8387 and 0.8682-0.8964). The ConvLSTM-
Attention model in all configurations show lower sensitivity and lower F1-scores at the 2-
day and 3-day forecasts, indicating reduced ability to detect wildfire events at longer lead
times. For the 1-day-ahead forecasts, the ConvLSTM-Attention model with a 4-day input
lag increased sensitivity by 27.4%, NPV by 16.2%, F1-score by 13.5%, and AUC by 4.1%
compared with the 4-day-lag ConvLSTM model. For the 2-day-ahead forecasts, the same
configuration improved sensitivity by 28.0%, NPV by 14.2%, F1-score by 10.2%, and AUC
by 0.9%. For the 3-day-ahead forecasts, sensitivity, NPV, F1-score, and AUC increased
by 22.0%, 9.9%, 7.0%, and 1.2%, respectively. These improvements highlight the
enhanced ability of the ConvLSTM-Attention model to identify wildfire events across all
forecast horizons for Kaua'‘i County. These findings highlight the model’s potential as a
useful tool for early warning systems and proactive wildfire management, allowing for
informed decision-making and resource allocation in fire-prone regions.
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Table 10. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-days ahead
with the wildfire records for Kaua'‘i County.

. ConvLSTM ConvLSTM-Attention
Metric indices Le?ddag?we
2-day-lag | 3-day-lag | 4-day-lag | 2-day-lag | 3-day-lag | 4-day-lag

1 0.7692 0.8077 0.6538 0.8077 0.7436 0.8333

Sensitivity 2 0.7436 0.7692 0.641 0.8333 0.7821 0.8205
3 0.7692 0.7436 0.641 0.8077 0.7692 0.7821

1 0.8205 0.8205 0.8846 0.8205 0.8846 0.8462

Specificity 2 0.8333 0.8462 0.8974 0.7821 0.8077 0.7949
3 0.8718 0.8718 0.8974 0.7821 0.7821 0.7949

1 0.7805 0.8101 0.7188 0.8101 0.7753 0.8354

NPV 2 0.7647 0.7857 0.7143 0.8243 0.7875 0.8158

3 0.7907 0.7727 0.7143 0.8026 0.7722 0.7848

1 0.8108 0.8182 0.85 0.8182 0.8657 0.8442

PPV 2 0.8169 0.8333 0.8621 0.7927 0.8026 0.8000

3 0.8571 0.8529 0.8621 0.7875 0.7792 0.7922

1 0.7895 0.8129 0.7391 0.8129 0.8000 0.8387

F1-score 2 0.7785 0.8000 0.7353 0.8125 0.7922 0.8101
3 0.8108 0.7945 0.7353 0.7975 0.7742 0.7871

1 0.8557 0.8711 0.8611 0.882 0.8695 0.8964

AUC 2 0.8537 0.8729 0.8598 0.8600 0.8660 0.8679

3 0.8549 0.8718 0.858 0.8585 0.8582 0.8682

Forecasting results for days with wildfire events

This section presents forecasting outcomes for the four Hawaiian counties on sample
days that experienced wildfires and droughts. The goal was to evaluate the model’s ability
to predict wildfires in advance and to assess how well its forecasts aligned with observed
environmental dryness at the time of each fire event. To conduct this analysis, two days
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with wildfire events were selected in each of the four Hawaiian counties, resulting in eight
case studies. For each case, we assessed the model’s ability to forecast wildfire
probability at 1-, 2-, and 3-day lead times. Drought maps were also shown for these days.

For Honolulu County, we assessed the ConvLSTM-Attention model’s performance for two
wildfire events on July 3 and August 12, 2018. The fires on these dates had sizes of 0.1
and 1 acres, respectively. The wildfire locations for these two days are marked with stars
in Figure 16. For both days, the model successfully forecasted high wildfire probability at
the fire locations up to three days ahead. The forecasted fire maps consistently
highlighted the southern, western, and southwestern parts of the island, known for
receiving a small amount of rainfall, as high-risk zones. Drought maps for both days
indicated moderate drought (D1) in the fire locations. The agreement between forecasted
high-risk areas and dryness demonstrates the model’s responsiveness to environmental
stress (Figure 16).
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Figure 16. Wildfire probability forecasts for Honolulu County on July 3 and August 12, 2018, at 1-, 2-, and 3-day lead times. Fire
locations are marked with stars. Drought classifications are also shown for the same days.

Figure 17 shows wildfire forecasts for Maui County on July 3 and August 12, 2018, along
with the respective wildfire locations. One fire of 2,500 acres occurred on July 3, and two
fires of 10 and 20 acres were observed on August 12. Across all lead times, the model
consistently identified the fire locations as high-risk zones (shown in red), indicating high
wildfire probability. This predictive consistency across three consecutive days
underscores the robustness of the model, even at longer forecast horizons. The three fire
events occurred under abnormal to moderate drought conditions (D0-D1), implying the
environmental sensitivity of the model. Particularly, for August 12, the predicted high-risk
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areas that experienced a wildfire fell within a region classified as moderate drought (D1),
further validating the model’s responsiveness to meteorological stressors.
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Figure 17. Wildfire probability forecasts for Maui County on July 3 and August 12, 2018, at 1-, 2-, and 3-day lead times. Fire
locations are marked with stars. Drought classifications are also shown for the same days.

Wildfires forecasts for Hawai‘i County are shown in Figure 18, for August 1, 2018 and
October 3, 2019. Wildfires on these dates had the size of 18,000 and 130 acres,
respectively. The model forecasted high wildfire probability at both fire locations across
all lead times. The 2018 fire occurred in an area experiencing DO to D1 drought, while the
2019 fire occurred within a zone of extreme drought (D3), surrounded by areas classified
as D1 and D2. These results highlight the model’s capability to detect high fire-risk under
both moderate and severe drought conditions (Figure 18).
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Figure 18. Wildfire probability forecasts for Hawai‘i County on August 1, 2018, and October 3, 2019, at 1-, 2-, and 3-day
lead times. Fire locations are marked with stars. Drought classifications are also shown for the same days.

For Kaua‘i County, August 2, 2015, and June 19, 2019 were chosen as both days
experienced wildfires. Three fires of 0.01, 0.01, and 25 acres were recorded on August
2, and two fires of 0.01 and 2000 acres happened on June 19. The largest fires on these
dates (i.e., the 25-acre fire on August 2, 2015 and the 2000-acre fire on June 19, 2019)
are marked with stars in Figure 19. For August 2, the model forecasted high probability
at the fire locations, which were situated within a D2 (severe drought) zone. For June 19,
the fire occurred near the boundary between moderate (D1) and severe drought (D2),
which was captured by the model’s high-risk fire forecasts across all lead times (Figure
19).
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Figure 19. Wildfire probability forecasts for Kaua‘i County on August 2, 2015, and June 19, 2019, at 1-, 2-, and 3-day lead
times. Fire locations are marked with stars. Drought classifications are also shown for the same days.

Overall, results across all four Hawaiian counties and all selected dates show that the
model generates satisfactory wildfire forecasts. Its ability to flag high-risk zones a few
days ahead demonstrates clear potential for deployment in real-time wildfire early warning
systems. This predictive capability represents a significant advancement in data-driven
fire risk management for drought-sensitive regions such as the Hawaiian Islands.

In August 2023, the Hawai‘i Wildfires (also known as the Maui Wildfires) caused more
than 100 deaths and damaged or destroyed around 3,000 buildings, leading to the
deadliest wildfire in the U.S. in more than a century (NOAA/NCEI, 2024). The fires inflicted
the most significant damage on the historic town of Lahaina, and to a lesser extent in
Upper Kula, as shown in Figure 20 by black polygons. To further evaluate the model
performance, we plotted wildfire risk forecast maps for 1-, 2-, and 3-day ahead during the
extreme wildfire event for Maui County in August 2023. The locations of these wildfires
are shown in Figure 20. Remarkably, wildfire forecast maps from August 8 to August 11
consistently indicated very high wildfire probabilities in Lahaina and Kula. Moreover, the
U.S. Drought Monitor maps for August 8 and August 15 show that Lahaina and Upper
Kula was experiencing moderate (D1) to severe (D2) drought, highlighting the
consistency of forecasted wildfire risk with short-term drought dynamics and reinforces
its operational value in early warning applications. According to the U.S. Drought Monitor
framework, such drought classifications are associated with meteorological and
agricultural drought types. These conditions involve precipitation deficits, elevated
evaporative demand, and soil moisture depletion, all of which critically enhance fuel
flammability and fire potential. These results are consistent with recent studies
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emphasizing the effect of drought on wildfires, including the work of Richardson et al.
(2022) and Yin et al. (2024).
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Figure 20. Wildfire probability forecasts for 1, 2, and 3-day ahead for Maui Island from August 8 to 11, 2023 as well as
corresponding drought classification maps

Discussion

The results of this study underscore the potential of deep learning models, particularly the
ConvLSTM framework enhanced with attention mechanisms, for improving wildfire
forecasting in the Hawaiian Islands. These findings are consistent with prior research that
highlights the value of advanced machine learning approaches in fire risk assessment.
For instance, Tran et al. (2025) showed that integrating the RF model with metaheuristic
optimization techniques can improve near real-time wildfire probability estimation. The
present study advances Tran et al. (2025)’s near real-time wildfire risk prediction to near-
future prediction. The ConvLSTM-Attention model offers superior forecasting accuracy by
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more effectively capturing both spatial and temporal patterns. The results suggest that
deep learning architectures, especially those designed for sequential data, may
outperform traditional machine learning methods in forecasting wildfire dynamics.

Recent studies, including those by Yelenik et al. (2024) and Mass and Ovens (2024),
have documented the rising frequency of wildfires in Hawai‘i, attributing this trend to
climate change, the spread of invasive vegetation, and human activities. The present
study contributes to the existing literature by presenting a predictive framework, which
enables short-term wildfire forecasting. The integration of attention mechanisms in the
ConvLSTM model plays a crucial role in improving predictive accuracy. Similar findings
have been reported in other domains, such as precipitation forecasting (Shi et al., 2015)
and natural disaster forecast (Rahman and Siddiqui, 2019), where attention-enhanced
LSTMs have shown improved performance in handling spatiotemporal dependencies. at
For the 1-day-ahead forecasts, the F1-score from the 4-day-lag ConvLSTM-Attention
model increases by 2.66% for Honolulu County, 5.32% for Hawai‘i County, 3.88% for
Maui County, and 13.48% for Kaua'i County, relative to the 4-day-lag ConvLSTM. This
aligns with previous work by Vaswani et al. (2017), who demonstrated that attention
mechanisms enhance neural networks’ ability to prioritize critical information in sequence-
based learning tasks.

In this study, we utilized sequences of wildfire probabilities produced by Tran et al. (2025)
as inputs into the ConvLSTM-Attention model. These wildfire sequences were already
obtained by utilizing key environmental factors including maximum air temperature,
relative humidity, rainfall, NDVI, antecedent precipitation index (API), and land cover into
a RF model. Future research could expand the current framework by incorporating
additional influential variables such as soil moisture (Yelenik et al., 2024) and fuel load
characteristics (Jacobi et al., 2017) in the ConvLSTM-Attention model to further improve
forecast precision. Therefore, while core weather and vegetation indices (i.e., maximum
air temperature, relative humidity, rainfall, NDVI, antecedent precipitation index (API), and
land cover) were considered, incorporating more influential input data enhance the
model’s accuracy. Moreover, ensemble approaches combining multiple deep learning
architectures, as suggested by Tehrany et al. (2019), may further strengthen performance
by leveraging diverse modeling strategies. Our use of a hybrid ConvLSTM model with
attention mechanisms has effectively captured spatiotemporal dependencies, yet future
research may explore further enhancements to improve generalization and robustness
across varying time scales and regions.

The ability to generate high-resolution predictive wildfire maps provides valuable tools for
emergency responders, land-use planners, and policymakers. By enabling proactive
decision-making, the proposed model supports targeted fire prevention strategies, early
evacuation planning, and optimized resource allocation key factors in reducing wildfire
impacts (Thompson et al.,, 2019). In conclusion, our study demonstrates that a
ConvLSTM-Attention model enhances wildfire forecasting accuracy, outperforming
traditional models in short-term forecasts.
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Conclusion

This study develops a hybrid deep learning framework that integrates ConvLSTM with
attention mechanisms, optimized by the Firefly Algorithm, to forecast wildfire probabilities
across the four Hawaiian counties. By leveraging multi-day input sequences, the
proposed model achieves high spatial and temporal accuracy, providing wildfire forecasts
up to three days in advance.

Our wildfire forecasts demonstrate strong agreement with the wildfire-probability maps of
Tran et al. (2025), with R? values exceeding 0.88 across all forecast lead times and all
four counties—Honolulu, Maui, Hawai‘i, and Kaua'i. RMSE values were consistently
below 0.07 and MAE values below 0.047 across all counties and lead times. This shows
that the model forecasts wildfire satisfactorily and in strong agreement with the wildfire
patterns presented by Tran et al. (2025).

Validation against recorded wildfire events indicates the reliability of the model in
identifying fire-prone areas. Additionally, drought condition maps from the U.S. Drought
Monitor were used to assess forecasted fire-prone zones, revealing strong spatial
alignment between predicted fire risk and areas experiencing drought. This
correspondence highlights the influence of environmental dryness on wildfire activity and
provides ecological support for the model’s outputs. The addition of an attention
mechanism to ConvLSTM improved the 1-day-ahead forecasts, increasing the F1-score
by 2.7% in Honolulu County, 5.3% in Hawai‘i County, 3.9% in Maui County, and 13.5% in
Kaua'i County, with corresponding AUC increases of 3.1%, 3.8%, 5.9%, and 4.1%,
respectively. These improvements reflect the model's enhanced ability to extract
meaningful spatiotemporal features and distinguish high-risk fire zones under varying
environmental conditions.

Differences in performance across counties suggest that incorporating additional
environmental variables such as soil moisture and fuel load could further enhance
forecasting accuracy. Overall, this project demonstrates the effectiveness of attention-
based deep learning for short-term wildfire forecasting. High-resolution wildfire-probability
forecasts enable early detection of fire conditions and provide practical information for
land-management planning, emergency response, and policy development.
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