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Developing a Wildfire Forecasting System for Hawai i 

Summary 

Wildfires in Hawai i increasingly threaten both ecological integrity and human well-being, 
prompting an urgent demand for accurate forecasting systems to support mitigation and 
preparedness efforts. Extreme weather conditions, particularly short-term drought, have 
frequently coincided with wildfire occurrences in recent years, offering valuable context 
for wildfire probability forecasts. In Hawai i, where flammable invasive grasses fuel rapid 
fire spread, accurate forecasting is essential for protecting vulnerable ecosystems and 
communities. This study introduces a hybrid deep learning framework that integrates 
Convolutional Long Short-Term Memory (ConvLSTM) networks with attention 
mechanisms, optimized by the Firefly Algorithm, to forecast wildfire probabilities across 
Hawai i. The model uses an input sequence of wildfire probability maps from the previous 
four  days (t, t 1, t 2, and t 3) and generates forecasts for the subsequent three days 
(t+1, t+2, and t+3). The model shows good agreement with observed wildfire events. For 
Honolulu County, the F1-scores are 0.7837, 0.7687, and 0.7651 for the 1-, 2-, and 3-day-
ahead forecasts, respectively. For Hawai i County, the corresponding values are 0.8182, 
0.7781, and 0.7749. The model performs satisfactorily for Maui County, with F1-scores 
of 0.8103, 0.7757, and 0.7785, and for , with F1-scores of 0.8387, 0.8101, 
and 0.7871. Validation against observed wildfire events demonstrates the model’s 
robustness in identifying fire-prone areas. This agreement is further supported by weekly 
drought classifications, which consistently shows that regions with higher predicted 
probability experience abnormally dry to moderate drought conditions. This connection 
indicates that the model responds well to short-term environmental stress that commonly 
precedes wildfire activity. Overall, this framework demonstrates a feasible potential for 
operational use in early warning systems, offering valuable insights for land managers, 
emergency responders, and policymakers in fire-prone regions. The wildfire forecasting 

https://www.hawaii.edu/climate-
data-portal/data-portal/). 

Keywords: Fire probability forecasting, ConvLSTM-Attention model, Firefly algorithm 
optimization, Spatiotemporal modeling, Multi-day wildfire forecasting 

Background 

Wildfires, recognized as one of the most destructive natural disasters, pose significant 
threats to ecosystems, human settlements, and economies worldwide (Hamadeh et al., 

. Over the past two decades, 
wildfires have caused extensive ecological and economic damage, driven by climate 
change and human activities that disrupt natural ecosystems and alter fire cycles in 
diverse regions, including island environments (Mass and Ovens, 2024; Rezaie et al., 
2023). According to Trauernicht et al. (2015), Hawai‘i’s annual burned area between 2005 
and 2011 averaged 8,427 hectares (0.48% of its land area), which was higher than the 
proportion burned across the entire U.S. mainland (0.30%) and even exceeded the 
average of 12 fire-prone western states, including Alaska (0.46%). 
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 almost a fourfold increase in the total area 
affected by wildland fires (Trauernicht, 2019). Although wildfires frequently ignite near 
developed landscapes, most of the burned area occurs in dry, nonnative grasslands and 
shrublands, which cover about 24% of the state (Trauernicht et al., 2015). These grass-
dominated ecosystems, combined with invasive species, prolonged drought, and 
widespread land-use changes such as abandoned agricultural fields, create continuous 
and highly flammable fuel beds. As fires spread rapidly through these landscapes and 
advance toward forested watershed margins, they pose significant risks to native 
ecosystems, watershed integrity, and community safety. This escalating threat highlights 
the need for improved landscape-scale fire-risk assessment and stronger integration of 
pre-fire planning and prevention in land management strategies (Marris, 2023; 
Trauernicht, 2015; Trauernicht et al., 2015; Yelenik et al., 2024). 

Several studies used historical fire records and long-term geo-environmental variables, 
including topography, land cover, vegetation indices, and climatic factors to generate 
wildfire susceptibility maps ( ). 
These maps provide the probability of wildfire occurrence over long periods and are 
therefore effective for identifying persistently high-risk areas over decadal scales. While 
wildfire susceptibility maps are valuable for long-term planning and mitigation, they are 
not suited for short-term early warning systems. To address this gap, Tran et al. 
(2025) developed hybrid Hunger Games Search (HGS)–Random Forest (RF) and Moth-
Flame Optimization (MFO)–RF models to estimate high spatial-resolution (250 m × 250 
m) near real-time daily wildfire probability for Hawai i. They used six conditioning factors 
(rainfall, maximum air temperature, relative humidity, normalized difference vegetation 
index, antecedent precipitation index, and land cover) as inputs to their models. The 
output remains limited to near real-time probability maps estimates rather than near-
future forecasts, and therefore cannot describe how wildfire likelihood changes over the 
next several days. It is evident that neither the long-term susceptibility maps nor the RF-
based near real-time probability estimates from Tran et al. (2025) address the operational 
needs that require 1–3 day wildfire forecasting for proactive planning, early warnings, and 
resource allocation. By supporting early detection and prevention, short-term wildfire 
forecasting can help reduce wildfire impacts and strengthen community resilience, 
making it an essential tool for mitigation and response strategies (McCaffrey, 2015; 
Thompson et al., 2019).   

Efforts to adapt mainland fire-
sharp gradients in vegetation, climate, and topography, which differ substantially from the 
continental conditions for which models like 
( ), FlamMap, and FARSITE were designed (Burgan et al., 1974; Fujioka et al., 
2000; Weise et al., 2010). More advanced ignition models developed for the 
conterminous United States, including the RMRS 7-day ignition-forecasting system, rely 
on long-term ignition records, coarse 20-km reanalysis grids, and monthly statistical 
equations calibrated to mainland fire regimes 
(https://research.fs.usda.gov/firelab/products/dataandtools/real-time-forecasting-wildfire-
ignitions-out-7-days). These characteristics make -
drying grass fuels and highly localized microclimates. 
depend on Red Flag Warnings (http://www.prh.noaa.gov/hnl/pages/firewx.php) derived 
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from weather conditions at the Honolulu International Airport station, using thresholds for 
the Keetch- , relative humidity, and wind speed  (Chu, 1995; Chu 

. As the Red Flag Warnings rely on weather data from a 
single station, they do not capture spatial variations in fire risk across the islands. 
Consequently, Red Flag Warnings may fail to be issued even under high-risk conditions 
elsewhere. For example, no Red Flags Warnings were issued during the large fires on 
Maui in 2019 and 2023. The absence of a spatially explicit system capable of capturing 
statewide changes in fire likelihood remains a critical operational gap and underscores 
the need for a forecasti
environment.  

The main objective of this study is to develop a near-future wildfire forecasting system for 
the State of Hawai i. This system is capable of forecasting wildfire probability 1-3 days 
ahead at a spatial resolution of 250 m. To the end, wildfire probability maps from the 
previous four days (generated by Tran et al. (2025)) are used as inputs to a hybrid deep 
learning framework that integrates Convolutional Long Short-Term Memory (ConvLSTM) 
networks with attention mechanisms, optimized by the Firefly Algorithm, to forecast 
wildfire probabilities across Hawai i. This study also addresses three research questions: 
(a) What are the benefits and limitations of applying deep learning models to short-term 
wildfire-probability forecasting? (b) How do attention-based methods improve the 
performance of wildfire-forecasting models? and (c) How does incorporating wildfire 
estimates from different number of previous days affect the performance of the wildfire 
forecasting model? 

To the best of our knowledge, this is the first study that forecasts daily wildfire probability 
for Hawai i. This study contributes to the literature in several significant ways: 1) it  
develops a novel ConvLSTM-based deep learning framework that generates short-term 
(1–3 day) wildfire-probability forecasts, 2) it incorporates an attention mechanism to 
strengthen temporal learning and improve forecast accuracy, 3) it evaluates the fire 
forecasts against weekly drought conditions, 4) it applies the Firefly Algorithm to optimize 
ConvLSTM hyperparameters, thereby improving forecasting accuracy, 5) it compares the 
wildfire forecasts with the historical wildfire maps from Tran et al. (2025); and finally 6) it 
compares the wildfire forecasts with reported wildfire events. The wildfire forecasting 
system from this study offers a valuable tool for land-use planners, emergency 
responders, and policymakers to mitigate wildfire impacts on Hawai i's communities and 
ecosystems. 

Data and preprocessing 

Study area 
The study area covers the State of Hawai i, which is comprised of four counties (i.e., 
seven islands): Honolulu, Maui, Kaua i, and Hawai i counties (Figure 1). The State of 
Hawai i encompasses a land area of 16,635 km2 with a resident population of 1.4 million. 
Wildfire locations from 2002-2020 are indicated in Figure 1 with circles. 

Hawai i's climate is primarily shaped by orographic precipitation, where moist 
northeasterly trade winds bring significant precipitation to the windward sides of the 
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islands' volcanic mountains, resulting in drier conditions on the leeward side (Giambelluca 
et al., 2013). Mean annual precipitation varies widely, ranging from 264 mm to over 6400 
mm (Tran et al., 2024), with a rainy season from November to April and a dry season 
from May to October (Frazier and Giambelluca, 2017) annual 
temperatures range modestly between 9°C and 23.8°C, but have shown a notable upward 
trend since the mid-1970s, in line with the global warming trend (Giambelluca et al., 2008). 
This temperature rise has led to changes in evapotranspiration and precipitation levels. 
Relative humidity also varies across the islands, with annual averages between 60% and 
86% (Tran et al., 2024). Under trade wind conditions, a distinct moisture transition occurs 
between 1200 and 2400 m; below these elevations, the air is moist, while above, it 
becomes dry. This difference is due to a temperature inversion within the moving trade 
wind air . 

) is a widely used remote sensing index 
for evaluating vegetation density and overall ecosystem condition. Tran et al. (2025) 

–0.2 to 0.8. Long-term 
analyses by Madson et al. (2023) 
across the Hawaiian Islands between 1982 and 2019, with the most pronounced 

 Island. 

shrublands to high-elevation alpine areas. In recent years, changes in land use have been 
driven by the decline of agriculture , the growth of commercial forestry 
(Ares and Fownes, 2000) and increasing housing development. 

Tran et al. (2025) shows the distribution of three main types of vegetation/covers across 
the state. Woody or coarse vegetation includes green dense woody vegetation that is 
over 5 meters high. Grass cover refers to low-growing fine vegetation and green or dry 
nonwoody herbaceous plants such as forbs, ferns, and graminoids. Bare earth includes 
all areas without vegetation and encompasses a wide variety of soil series and ages found 
across Hawai i, ranging from young bare lava flows to aged weathered oxisoils and 
andisols (Lucas, 2017). 

the past four decades (Giambelluca et al., 2008; Longman et al., 2019). As the state 
continues to warm, wildfire frequency and total burned area have also increased and are 
projected to rise further (Tran et al. 2025). This escalation in fire activity is driven largely 
by the abandonment of agricultural lands, which has facilitated the expansion of fire-prone 

area (~800,000 hectares), coupled with declining resources and institutional support 
historically available for firefighting (Trauernicht et al., 2015). Recent outcomes of these 
landscape and climate changes include more than 17,000 acres burned on Maui in 2019, 

Lane in 2018—burning 23 homes and forcing evacuations—and the 2023 Maui wildfires, 
which caused over 100 fatalities and destroyed or damaged roughly 3,000 structures, 
marking the deadliest U.S. wildfire in more than a century. 
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Figure 1. The selected study areas and recorded wildfire occurrences from 2002 to 2020. 
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Figure 2. nnual area urned in the tate of awai i for 1 0 -2022. 

 
Data description 
In this study, we utilized historical daily wildfire probability estimates from Tran et al. 
(2025). We incorporated these probabilities as input variables into developed models to 
forecast fire probability 1, 2, and 3 days ahead (i.e., t+1, t+2, and t+3), where t represents 
the current day. To determine the optimal input configuration (i.e., number of lags) for 
accurate forecasting, we systematically tested three different configurations: a 2-day lag 
(t, t-1), a 3-day lag (t, t-1, t-2), and a 4-day lag (t, t-1, t-2, t-3). These lags represent the 
days preceding the first forecast day (t+1), during which wildfire probability estimates from 
Tran et al. (2025) were incorporated into developed models as predictive variables. This 
approach enabled us to examine how different input lag lengths influence predictive 
performance, ensuring that the model effectively captures the temporal evolution of 
wildfire risk while reducing the potential for overfitting. By adjusting the input structure, we 
aimed to enhance the model’s ability to learn from historical patterns and improve its 
forecasting accuracy. 

The wildfire probability forecasts from this study are evaluated against observed wildfire 

Hawai i Wildfire Management 
Organization (HWMO), 

used for model validation, providing the ground-truth observations needed to assess 
forecast performance through sensitivity, specificity, 

-score (the harmonic mean of sensitivity and 
precision), and the area under the ROC curve (AUC) metrics. These wildfire records 
contain comprehensive data on each incident, such as geographic location, burned area, 
and the date of occurrence. To be consistent with Tran et al. (2025) and to ensure the 
analysis concentrated on major wildfire events, only fire surpassing 8 acres in size were 
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included. Consequently, the dataset comprises 292 fire events in Honolulu County, 188 
in Hawai i County, 90 in Maui County, and 78 in Kaua i County between 2002 and 2020. 

Drought Condition 

(https://droughtmonitor.unl.edu/CurrentMap.aspx), a collaborative product of the 
University of Nebraska–
drought severity levels across the United States on a weekly basis, categorized into five 
main drought intensity levels: , indicating short-term dryness that may 
precede or follow drought; , involving some damage to crops and 
pastures with developing water shortages; , reflecting likely crop or 
pasture losses and the need for water restrictions; , denoting major 
agricultural losses and widespread water shortages; and , 
representing severe, prolonged drought impacts that often require emergency responses  
(Noel et al., 2020).  

As daily drought records are unavailable, weekly data were utilized to identify the nearest 
drought condition corresponding to forecasted fire-prone days. To classify drought 
severity levels in this study, we adopted the drought categorization system based on the 

-Evapotranspiration 
Table 1. Each drought category was assigned a specific 

color for mapping purposes to enhance visual interpretation. 

Table 1. 
percentile ranges, color-coded for map visualization. 

Category    

None Normal or wet conditions 30.01 or above -0.49 or above 

D0  20.01 to 30.00 -0.5 to -0.79 

D1  10.01 to 20.00 -0.8 to -1.29 

D2  5.01 to 10.00 -1.3 to -1.59 

D3  2.01 to 5.00 -1.6 to -1.99 

D4  0.00 to 2.00 -2.0 or less 

 

Methodology 

ConvLSTM network 
ConvLSTM, a variant of the traditional LSTM (Long Short-Term Memory) network, 
incorporates convolutional operations into the standard LSTM architecture to effectively 
capture both temporal and spatial dependencies in time series data (Shi et al., 2015). 
This capability is particularly advantageous for wildfire forecasting, where both spatial 
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patterns (e.g., topography, land cover type) and temporal sequences (e.g., weather data, 
vegetation conditions) play a critical role in fire occurrences.  

The core advantage of the ConvLSTM model lies in its ability to utilize memory cells for 
input, forget, and output gates through convolutional operations rather than fully 
connected layers, as in traditional LSTM networks (Moishin et al., 2021; Shi et al., 2015). 
This allows the model to retain spatial information from multidimensional input data, such 
as gridded weather datasets and vegetation indices, ensuring that relevant spatial 
features are not lost during the forecasting process. 

The ConvLSTM model handles the following gates through convolutional operations: 

Forget Gate (
memory cell to be discarded. 

Input Gate ( ): Controls how much new information from the current input will be added 
to the memory cell. 

Cell State Update ( ): Updates the memory cell state by combining the retained 
information from the forget gate and the new information from the input gate. 

Output Gate (
the current output. 

The equations governing these gates are given as follows (Shi et al., 2015): = ( + + + ) (1) = ( + + + ) (2) = × + × tanh( + + ) (3) = ( + + + ) (4) = × tanh( ) (5) 

where * denotes convolution and × the Hadamard product;  and  represent the input 
and hidden state at time t (with t 1 indicating the previous step); , , ,  and , 

, ,  are the convolutional kernels for input-to-state and hidden-to-state transitions; 
, , ,  are peephole connections from the cell state; and  denotes the sigmoid 

activation function. 

A key difference between ConvLSTM and traditional LSTM is the use of peephole 
connections, where all gates have access to the previous memory cell content ( ), 
even when the output gate is closed. This peephole connection ensures that the impact 
of earlier inputs is preserved across long input sequences, which is crucial for accurately 
capturing wildfire dynamics over time (Rahman and Siddiqui, 2019). 



9 
 

ConvLSTM-Attention model 
In 2014, a team from Google innovatively integrated the attention mechanism into a deep 
learning recurrent neural network, yielding significant advancements in image 
classification tasks (Mnih et al., 2014). This pioneering application marked the beginning 
of widespread adoption of the attention mechanism in scholarly research across various 
fields. Bahdanau et al. (2015) successfully applied the attention mechanism to natural 
language processing, significantly enhancing translation algorithms. In 2017, Google's 
research team introduced the Transformer encoder-decoder algorithm (Vaswani et al., 
2017), which exclusively utilized the self-attention mechanism. This approach departed 
from the traditional recurrent and convolutional neural networks commonly employed in 
deep learning. By leveraging the fundamental attributes of neural networks, the 
transformer demonstrated exceptional performance across various natural language 
processing tasks. 

The attention mechanism is inspired by human visual attention, where the visual system 
does not uniformly process an entire scene. Instead, it selectively focuses on specific 
areas of interest within the scene. In essence, when an algorithm identifies that certain 
information within a scene consistently correlates with the label, it learns to prioritize this 
information in similar future scenarios, enhancing efficiency by focusing less on other 
areas. This principle that underpins the ConvLSTM-Attention network structure is 
depicted in Figure 3. 

 

Figure 3. Schematic of a ConvLSTM-Attention model. 

In the ConvLSTM–Attention architecture, the Query (Q) represents the feature vector at 
the current time step, while the Keys ( , …, ) and Values ( , …, ) correspond to 
spatial–temporal feature representations extracted from earlier ConvLSTM hidden states 
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or from patches of the input sequence. The attention computation follows three main 
steps: (1) the model first computes a similarity score between the query Q and each key 

, typically using dot-product or additive attention (Bahdanau et al., 2015); (2) these 
similarity scores are then normalized through a softmax function to produce attention 
weights that sum to one; and (3) the normalized weights are applied to the corresponding 
value vectors , and a weighted summation is performed to obtain the final attention 
output. In this formulation, each  represents the value vector associated with key , 
capturing encoded spatial–temporal information that the model selectively re-weights and 
integrates to emphasize the most relevant regions or time steps for prediction. 

The fundamental component of the attention mechanism involves a set of weight 
parameters. These parameters are iteratively adjusted to learn the association strength 
between each element in the sequence and the corresponding label. Based on this 
learned correlation, the attention module then reallocates weights to the original inputs, 
effectively reassigning importance to different parts of the input data. The attention 
module is responsible for assigning weight parameters. By integrating this module, 
different vectors in a sequence are allocated varying levels of attention, which reflects 
their respective impacts on predicting current information. This inclusion of new 
information significantly enhances the efficiency of network learning. 

Firefly algorithm 
The firefly algorithm (FA) is one of the most prominent swarm-based metaheuristic 
algorithm, which was introduced by Yang (2009). It is built based on three rules: 1) fireflies 
are attracted to each other regardless of gender; 2) attractiveness of fireflies is 
proportional to their brightness, meaning that less bright fireflies move toward brighter 
ones; and 3) the brightness is determined by evaluating the fitness function (Larabi Marie-
Sainte and Alalyani, 2020). The FA divides the population into subgroups during the 
iterative optimization process, with each subgroup located near a local extremum in the 
search space. This division facilitates the search for the global optimal solution and makes 
the FA capable of solving non-linear and multi-model optimization problems (Nayak et al., 
2020)  of the FA can be 
adjusted dynamically based on the optimization conditions, which can accelerate the 
algorithm’s convergence speed. In the FA, every firefly is drawn towards any firefly 
brighter than itself, which leads to a high convergence performance (Li et al., 2022). The 
FA does not require a good initial solution and always results in the same optimal solution 
regardless of the starting point. The readers are referred to Fister et al. (2013) for a 
detailed description of the FA and its mathematical expressions. 

Model assessment 
The evaluation of wildfire forecasts from the developed models are conducted through a 
two-step process. First, the forecasted wildfire probability maps for 1, 2, and 3 days ahead 
were compared with the existing wildfire risk maps from Tran et al. (2025). This 
comparative analysis utilized several statistical metrics widely used in predictive modeling 
and error measurement. The coefficient of determination ( ) indicates the proportion of 
variance in the reference data that is explained by the forecasts. Higher R² values reflect 
better agreement between the wildfire probability forecasts from this study and the 
historical estimates from Tran et al. (2025). Root Mean Squared Error (RMSE) provides 
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a direct measure of the average forecasting error relative to the historical estimates. Mean 
Squared Error (MSE) represents the average of the squared differences between the 
forecasts (this study) and the historical estimates from Tran et al. (2025).  Mean Absolute 
Error (MAE) shows the average of the absolute differences between the forecasts and 
historical estimates. 

Following this initial validation, the wildfire forecasts underwent a further assessment 
using historical wildfire events records from 2002 to 2020 to validate their robustness in 
real-world scenarios. This phase focused on classification accuracy, utilizing metrics such 

 to evaluate the model’s capability to 
correctly classify wildfire and non-wildfire events (Umberger et al., 2017). Recall 
(Sensitivity) and Specificity were computed to determine the model’s efficiency in 
identifying both wildfires and non-wildfires events (Naidu et al., 2023). The AUC was 
employed to assess the model's performance across various threshold levels, which is 
important for applications in environments with imbalanced datasets (Hand, 2009). 
Additionally, the F1 Score was calculated to provide a balanced measure of the model’s 
precision and recall, offering a single metric that summarizes the model’s overall accuracy 
in detecting wildfires (Wardhani et al., 2019). The equations for Sensitivity, Specificity, 

 

=  +                                  (6) 

=  +                                  (7) 

=  +                                  (8) 

=  +  (9) 

1 =  2 × ×+  (10) 

(true negative) denotes the number of correctly classified non- false 
positives) shows the number of non-wildfire pixels misclassified as wildfires, and FN (false 
negatives) indicates the number of wildfire pixels incorrectly classified as non-wildfires. 

Through these comprehensive assessment phases, our study not only compares the 
wildfire forecast maps against historical estimates from Tran et al. (2025), but also 
evaluate them using historical wildfire records, ensuring their value for wildfire 
management and response strategies. 

Results 
Model tuning 
To improve the performance of the ConvLSTM and ConvLSTM-Attention models, we 
applied the Firefly Algorithm to systematically search for the optimal hyperparameter 
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configurations. This approach enabled efficient tuning by exploring a wide range of 
possible hyperparameter values while avoiding local optima, ensuring improved model 
convergence and predictive accuracy. Table 2 summarizes the optimized 
hyperparameters obtained by the Firefly Algorithm. The tuning process focused on 
selecting the optimal number of filters, kernel sizes, activation functions, and batch 
normalization settings, as well as determining the most effective learning rate for the 
Adam optimizer. The Firefly Algorithm identified a set of hyperparameters that minimized 
the mean squared error (MSE) and improved the classification performance, particularly 
the F1-score. 

A key observation from the tuning process was that the ConvLSTM-Attention model 
required fewer filters than the standard ConvLSTM model, as the attention mechanism 
effectively prioritized critical spatial-temporal features, reducing the need for additional 
feature-extraction layers. Additionally, the Firefly Algorithm identified that a kernel size of 
3×3 in the ConvLSTM layers provided the best balance between computational efficiency 
and predictive accuracy. By using the Firefly Algorithm for hyperparameter selection, we 
achieved improved model generalization and faster convergence, ensuring the 
robustness of wildfire probability forecasting across the State of Hawai i. The detailed 
hyperparameter settings and optimization results are provided in Table 2. 

 

Table 2. Optimized hyperparameters for the ConvLSTM-Attention model. 

Hyperparameter Value Description 

Number of ConvLSTM 
Layers 2 Two stacked ConvLSTM layers for 

spatiotemporal encoding 

Filters (Layers 1 & 2) 128, 64 Number of filters in first and second 
ConvLSTM layers 

Kernel Size 
(ConvLSTM) 3×3 Size of the convolutional kernel 

Activation Function 

Tanh (ConvLSTM), Sigmoid 
(Final), 

Softmax (Attention) 

Nonlinearities applied in different model 
components 

Return Sequences TRUE (L1), FALSE (L2) Whether to return full sequences or final 
outputs 

Attention Mechanism Multi-head Spatial-channel attention applied between 
layers 

Attention Kernel Size (1×1×1) Kernel size for attention computation 
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Batch Normalization Applied (after each layer) Stabilizes training and improves 
generalization 

Optimizer Adam Adaptive moment estimation for training 

Learning Rate 0.001 Initial learning rate for the optimizer 

Loss Function Mean Squared Error (MSE) Measures difference between predicted 
and true values 

Output Channels 3 Number of output channels for multi-day 
forecast 

Input Sequence 
Length 4 days Number of previous days used as input 

 
Evaluation of Forecasted Wildfire Maps 
In this study, wildfire probability maps were forecasted for Honolulu, Maui, Hawai i, and 
Kaua i counties using the ConvLSTM and ConvLSTM-Attention models. To evaluate the 
impact of temporal dependencies on predictive performance, we applied three different 
lag configurations: 2-, 3-, and 4-day lags. These configurations allowed for a comparative 
assessment of how varying lag lengths influence the accuracy of wildfire risk forecasting. 
These forecasts illustrate the model’s ability to identify high-risk areas across different 
time horizons and to simulate the spatial and temporal evolution of wildfire risk. The 
following subsections provide a detailed analysis of wildfire risk forecasting for each 
county, highlighting key fire-prone regions and evaluating the model’s ability to detect fire 
occurrences. 

Honolulu County 
The forecasted wildfire maps for 1, 2, and 3 days ahead are compared with the historical 
wildfire probability maps from Tran et al. (2025) for Honolulu County, using 2-, 3-, and 4- 
day lags (Table 3). The results for the 3- and 4-day lags are very close and better than 
the 2-day lag configuration. Both the ConvLSTM and ConvLSTM-Attention models 
achieved high R² values, and low RMSE and MAE across all forecast horizons. The 
ConvLSTM model reached R² values between 0.9462 and 0.9629, with RMSE ranging 
from 0.0374 to 0.0452, and MAE from 0.0169 to 0.0212. These values show strong spatial 
agreement between the 1- to 3-day forecasts and the historical wildfire probability maps 
from Tran et al. (2025). The ConvLSTM-Attention model obtained R², RMSE, and MAE 
values that were very close to those of the ConvLSTM model, with RMSE and MAE 
improving by about 3% to 5% in several configurations. This suggests that the attention 
mechanism enhances the model’s sensitivity to changes in wildfire probability by re-
weighting the most informative features. Overall, these results indicate that the forecasts 
for Honolulu County aligned well with the historical wildfire probability patterns across the 
1- to 3-day lead times. 

The spatial comparisons for March 29, March 30, and April 4, 2021 are shown in Figures 
4, 5, and 6, respectively, with the forecasted wildfire probability maps in the top row, the 
Tran et al. (2025) maps in the middle row, and the absolute misfit in the bottom row. 
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These figures show strong agreement between our forecasts and the historical wildfire 
probability maps across the 1-, 2-, and 3-day lead times. Tran et al. (2025) identified 
higher wildfire probabilities in the south, west, southeast, and northwest of Honolulu 
County during these dates, and these patterns are consistently captured in our forecasts. 

robabilities close to 0 and 1 indicate low and high wildfire likelihoods, respectively. In 
the 1-day-ahead forecast (Figure 4), misfit values remain very low across the county, 
generally below 0.05. The 2-day-ahead forecast (Figure 5) shows a modest increase in 
misfit in parts of the western region, and the 3-day-ahead forecast (Figure 6) displays the 
largest differences. Even with these increases, most misfit values remain below 0.1 
across Honolulu County. These spatial results agree with the numerical metrics, with 
RMSE values across the three selected dates ranging from 0.033 to 0.042 for the 1-day 
forecasts, 0.050 to 0.062 for the 2-day forecasts, and 0.057 to 0.075 for the 3-day 
forecasts. 

Table 3. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead 
with the historical wildfire probability maps from Tran et al. (2025) for Honolulu County. 

 

 

County Model Configuration 
 RMSE MAE 

1 day 2 days 3 days 1 day 2 days 3 days 1 day 2 days 3 days 

Honolulu 

ConvLSTM 

2-day-lag 0.9586 0.9491 0.9462 0.0395 0.0439 0.0452 0.0183 0.0208 0.0212 

3-day-lag 0.9628 0.9555 0.9548 0.0374 0.0411 0.0414 0.0187 0.0204 0.0207 

4-day-lag 0.9629 0.9537 0.9529 0.0374 0.0419 0.0423 0.0169 0.0193 0.0193 

ConvLSTM-
Attention 

2-day-lag 0.9611 0.9561 0.9544 0.0381 0.0408 0.0415 0.0171 0.0189 0.0192 

3-day-lag 0.9630 0.9578 0.9562 0.0372 0.0399 0.0405 0.0168 0.0184 0.0187 

4-day-lag 0.9624 0.9573 0.9557 0.0376 0.0402 0.0410 0.0179 0.0193 0.0196 
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3-day-ahead forecasts, the 4-day-lag ConvLSTM-Attention model attains the highest 
-scores (0.7687 and 

0.7651), and AUC values (0.8302 and 0.8304), demonstrating stronger predictive 
performance at the longer forecast horizons compared with the other models. Using the 
4-day input lag, the ConvLSTM-Attention model shows consistent overall improvement 
when compared with the ConvLSTM model across most evaluation metrics. Although 
individual lead times s
across the 1-, 2-, and 3-day forecasts indicates increases of 2.58% in sensitivity, 1.29% 

-score, and 1.31% in AUC. These 
gains indicate that the 4-day-lag ConvLSTM-Attention configuration provides the most 
accurate wildfire detection for Honolulu County.  

Table 4. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead 
with the wildfire records for Honolulu County.  

Metric 
indices 

Lead time 
(day) 

ConvLSTM ConvLSTM-Attention 

2-day-lag 3-day-lag 4-day-lag 2-day-lag 3-day-lag 4-day-lag 

Sensitivity 

1  0.7103 0.7276 0.7345 0.7000 0.7448 0.7310 

2  0.7310 0.7345 0.7138 0.7034 0.7345 0.7448 

3  0.6662 0.7276 0.7138 0.7034 0.7310 0.7414 

Specificity 

1  0.8241 0.8138 0.8103 0.8690 0.8483 0.8655 

2  0.8103 0.8138 0.8138 0.8172 0.8172 0.8069 

3  0.8138 0.8138 0.8207 0.8172 0.8138 0.8034 

 

1  0.7399 0.7492 0.7532 0.7434 0.7688 0.7629 

2  0.7508 0.7540 0.7398 0.7337 0.7548 0.7597 

3  0.7217 0.7492 0.7414 0.7337 0.7516 0.7565 

 

1  0.8016 0.7962 0.7948 0.8423 0.8308 0.8446 

2  0.7940 0.7978 0.7931 0.7938 0.8008 0.7941 

3  0.7766 0.7962 0.7992 0.7938 0.7970 0.7904 

F1-score 

 

1  0.7532 0.7604 0.7634 0.7646 0.7855 0.7837 

2  0.7612 0.7648 0.7514 0.7459 0.7662 0.7687 

3  0.7330 0.7604 0.7541 0.7459 0.7626 0.7651 

AUC 1  0.8250 0.8288 0.8284 0.8500 0.8519 0.8544 
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 2  0.8209 0.8282 0.8268 0.8260 0.8276 0.8302 

3  0.8195 0.8273 0.8272 0.8260 0.8284 0.8304 

 

Maui County  
The forecasted wildfire probability maps for 1, 2, and 3 days ahead are compared with 
the historical wildfire probability maps from Tran et al. (2025) for Maui County in Table 5. 
The ConvLSTM and ConvLSTM-Attention models show almost identical performance for 
the 1- and 2-day forecasts, with both models reaching R² values above ~0.95 and RMSE 
values around 0.04–0.05. For the 3-day forecasts, the ConvLSTM-Attention model with 
the 4-day-lag configuration performs best, reducing RMSE by approximately 10% 
compared to the corresponding ConvLSTM configuration (0.0454 vs. 0.0503). Based on 
this improvement, the ConvLSTM-Attention model with 4-day-lag was selected as the 
preferred model. Overall, the models maintain good agreement with the historical wildfire 
probability maps from Tran et al. (2025).  

The spatial comparisons for March 27, April 1, April 4, and April 30, 2021 are shown in 
Figures 7, 8, and 9, with the ConvLSTM-Attention forecasted wildfire probability maps in 
the top row, the Tran et al. (2025) maps in the middle row, and the absolute misfit in the 
bottom row. These figures illustrate the close agreement between the wildfire probability 
forecasts and historical wildfire probability estimates across Maui County. Tran et al. 
(2025) indicated higher wildfire probability across the central valley and the leeward 
regions of Maui Island
and these spatial patterns are captured fairly well in the forecasts. For the 1-day-ahead 
forecasts (Figure 7), three of the four dates show strong agreement, with R² values 
between 0.919 and 0.968 and RMSE values between 0.044 and 0.062, while the April 1 
case exhibits weaker performance (R² = 0.830, RMSE = 0.090), reflecting noticeable 
mismatches on Moloka i and -day-ahead forecasts (Figure 8) show a 
similar pattern: March 27, April 4 (in most areas), and April 30 align well with the historical 
maps (R² between 0.692 and 0.896; RMSE between 0.083 and 0.120), but the April 1 
forecast shows substantially lower agreement (R² = 0.343; RMSE = 0.177). The 3-day-
ahead forecasts (Figure 9) remain consistent on March 27, April 4, and April 30 (R² 
between 0.617 and 0.834; RMSE between 0.094 and 0.134), while showing a weak 
agreement on April 1 (R² = 0.288; RMSE = 0.184). Aside from April 1, the misfit values 
are mostly below 0.15, indicating small spatial differences between the forecasted and 
historical probability 
other three dates maintain low misfit values and reproduce the main wildfire-prone areas 
identified by Tran et al. (2025). RMSEs across the four selected dates range from 0.044 
to 0.090 for the 1-day forecasts, 0.080 to 0.177 for the 2-day forecasts, and 0.094 to 0.184 
for the 3-day forecasts. 
other three dates maintain low misfit values and reproduce the main wildfire-prone areas 
identified by Tran et al. (2025). 
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Table 5. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-day-ahead 

with the historical wildfire probability maps from Tran et al. (2025) for Maui County. 

 

 

 

 

 

 

County Model Configuration 
 RMSE MAE 

1 day 2 days 3 days 1 day 2 days 3 days 1 day 2 days 3 days 

Maui 

ConvLSTM 

2-day-lag 0.9574 0.9519 0.9496 0.0434 0.0461 0.0472 0.0170 0.0179 0.0178 

3-day-lag 0.9625 0.9568 0.9530 0.0408 0.0437 0.0456 0.0166 0.0176 0.0184 

4-day-lag 0.9603 0.9496 0.9428 0.0419 0.0472 0.0503 0.0149 0.0170 0.0183 

ConvLSTM-
Attention 

2-day-lag 0.9597 0.9542 0.9500 0.0423 0.0450 0.0470 0.0171 0.0178 0.0192 

3-day-lag 0.9597 0.9493 0.9404 0.0422 0.0473 0.0513 0.0165 0.0186 0.0204 

4-day-lag 0.9586 0.9558 0.9533 0.0428 0.0442 0.0454 0.0186 0.0191 0.0196 
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Figure 8. (Top row) 2-day ahead forecasted wildfire probability maps, (middle row) historical wildfire probability estimates 
from Tran et al. (2025), and (bottom row) the absolute misfit between the top and middle rows for four sample days in 
Maui County.
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Table 6. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-days ahead 
with the wildfire records for Maui County.  

Metric 
indices 

Lead time 

(day) 

ConvLSTM ConvLSTM-Attention 

2-day-lag 3-day-lag 4-day-lag 2-day-lag 3-day-lag 4-day-lag 

Sensitivity 

1  0.8556 0.8222 0.8667 0.8333 0.8444 0.8778 

2  0.8556 0.8222 0.8222 0.8333 0.8778 0.8778 

3  0.8556 0.8222 0.8000 0.8333 0.9000 0.8667 

Specificity 

1  0.6778 0.6667 0.6444 0.7778 0.7444 0.7111 

2  0.6556 0.6444 0.7011 0.6667 0.6667 0.7067 

3  0.6889 0.6444 0.7111 0.6556 0.5556 0.7111 

 

1  0.8243 0.7895 0.8286 0.8235 0.8272 0.8533 

2  0.8194 0.7838 0.8000 0.8000 0.8226 0.8308 

3  0.8267 0.7838 0.7805 0.8194 0.8475 0.8209 

 

1  0.7264 0.7115 0.7091 0.7895 0.7677 0.7524 

2  0.7130 0.6781 0.6400 0.7143 0.6695 0.6870 

3  0.7033 0.6681 0.6347 0.7130 0.6694 0.6903 

 

F1-score 

 

1  0.7857 0.7629 0.7800 0.8108 0.8042 0.8103 

2  0.7678 0.7551 0.7689 0.7692 0.7596 0.7757 

3  0.7897 0.7551 0.7640 0.7678 0.7678 0.7785 

 

AUC 

 

1  0.8260 0.8221 0.8312 0.8538 0.8638 0.8731 

2  0.8108 0.8221 0.8135 0.8148 0.8128 0.8310 

3  0.8248 0.8247 0.8127 0.8167 0.8130 0.8295 

 

Hawai i County 
The forecasted wildfire probability maps for 1, 2, and 3 days ahead are compared with 
the historical wildfire probability maps from Tran et al. (2025) for Hawai i County in Table 
7. The results show that both the ConvLSTM and ConvLSTM-Attention models achieved 
strong performance across all forecast horizons, with R² values above 0.88 for 1-day and 
2-day forecasts and above 0.87 for the 3-day forecasts. The ConvLSTM-Attention model 
achieved R² values between 0.8840 and 0.9148 across the 2-, 3-, and 4-day lag 
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configurations, with RMSE ranging from 0.0631 to 0.0737 and MAE from 0.0297 to 
0.0359. The 4-day-lag configuration performed best, reducing RMSE by 3.7%, 5.6%, and 
5.2% for the 1-, 2-, and 3-day forecasts, respectively, when compared with the 2-day-lag 
model, and by 3.8%, 5.8%, and 5.4% for the same forecast horizons when compared with 
the 3-day-lag model. The corresponding MAE values were also lower, decreasing by 
0.7%, 4.4%, and 3.1% for the 1-, 2-, and 3-day forecasts relative to the 2-day-lag model, 
and by 0.7%, 1.8%, and 0.6% when compared with the 3-day-lag model, indicating 
improved agreement with the historical wildfire probability maps. The ConvLSTM model 
showed a similar pattern, with the 4-day-lag configuration yielding the lowest RMSEs of 
0.0633, 0.0682, and 0.0704 for respectively 1-, 2-, and 3-day ahead, further supporting 
the benefit of incorporating longer input sequences. Based on these improvements, the 
ConvLSTM-Attention model with a 4-day input lag was selected as the best-performing 
configuration. 

The spatial comparisons for the selected dates (March 31, April 5, April 8, and April 15, 
2021) are presented in Figures 10, 11, and 12, where the top row contains the forecasted 
wildfire probability, the middle row contains the wildfire probability map from the Tran et 
al. (2025) study, and the bottom row contains the absolute misfit between the forecasted 
and historical wildfire probability. These figures show that the ConvLSTM-Attention model 
with a 4-day lag represents the distribution of wildfire probability across Hawai i County 
well for the 1-, 2-, and 3-day forecasts. Tran et al. (2025) indicated higher wildfire 
probability in the northwestern, southern, and southeastern parts of the island on these 
dates, and these areas are well captured in the 1-, 2-, and 3-day forecasts. Figures 10, 
11, and 12 indicate a clear increase in misfit as the forecast lead time extends from 1 to 
3 days. April 8 presents the largest differences, particularly in the 3-day-ahead forecasts. 

remains predominantly below 0.15, indicating relatively 
small differences compared with the wildfire-probability maps produced by Tran et al. 
(2025). The metrics support this agreement: R² values for the 1-day forecasts (Figure 10) 
range from 0.945 to 0.982, with RMSE between 0.031 and 0.046 and MAE between 0.024 
and 0.036. For the 2-day forecasts (Figure 11), R² ranges from 0.761 to 0.886, RMSE 
from 0.078 to 0.097, and MAE from 0.056 to 0.073, while the 3-day forecasts (Figure 12) 
yield R² values between 0.728 and 0.875, RMSE from 0.081 to 0.103, and MAE from 
0.060 to 0.078. These values show that the forecasts for Hawai i County match the 
wildfire-probability maps from the Tran et al. (2025) study across most dates, with 
reduced agreement only on April 8. 
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Figure 11. (Top row
) 2-day

ahead forecasted w
ildfire probability m

aps, (m
iddle row

) historical w
ildfire probability estim

ates 
from

 Tran et al. (2025), and (bottom
 row

) the absolute m
isfit betw

een the top and m
iddle row

s for four sam
ple days in Haw

aii 
County.
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Figure 12. (Top row
) 3-day

ahead forecasted w
ildfire probability m

aps, (m
iddle row

) historical w
ildfire probability estim

ates 
from

 Tran et al. (2025), and (bottom
 row

) the absolute m
isfit betw

een the top and m
iddle row

s for four sam
ple days in Haw

aii 
County.

Table 8 sum
m

arizes the correspondence betw
een the forecasted w

ildfire probability 

across the 1-, 2-, and 3-day lead tim
es. The C

onvLSTM
 m

odel show
s sensitivity

of 
0.7181–0.7871, specificity of 0.7606–

–
of 0.7668–

0.7988, F1-scores of 0.7486–0.7769, and
AU

C
 of 0.8265–0.8353

across the 1-, 2-, and 
3-day forecast

horizons. Am
ong the tested configurations, the C

onvLSTM
-Attention 

m
odel w

ith a 4-day input lag provides the strongest agreem
ent w

ith the w
ildfire records, 

offering the highest sensitivity values across all lead tim
es (0.7872–0.8138) and 

-score values (0.7802–0.8158
and 0.7849–0.8226), along 

w
ith AU

C
 of 0.8286–0.8636 across the 1-, 2-, and 3-day lead tim

es. These results indicate 

C
ounty.

Across the forecast horizons, the 4-day-lag C
onvLSTM

-Attention m
odel im

proves several 
key w

ildfire-identification m
etrics relative to the 4-day-lag C

onvLSTM
 m

odel. For the 1-
day-

-score, and AU
C

 increased by 
3.4%

, 8.4%
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, respectively. For the 2-day-ahead forecasts, 
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-score increased by 5.7%, 3.5%, and 2.1%. For the 3-day-ahead 
forecasts, the same configuration increased sensitivity by 7.2 4%, and F1-
score by 2.8%. These improvements highlight the contribution of the attention mechanism 

- and 3-day lead 
times where early identification is most critical for operational preparedness and 
response. These results show that although forecast accuracy decreases with longer lead 
times, the model maintains strong predictive capability and remains suitable for 

 

Table 8. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-days ahead 
with the wildfire records for Hawai i County.  

Model ConvLSTM ConvLSTM-Attention 

Metric indices Lead time 
(day) 2-day-lag 3-day-lag 4-day-lag 2-day-lag 3-day-lag 4-day-lag 

Sensitivity 

1  0.7553 0.7766 0.7872 0.7979 0.7926 0.8138 

2 0.7287 0.7553 0.75 0.7606 0.7606 0.7926 

3  0.7181 0.7287 0.734 0.7553 0.7606 0.7872 

Specificity 

1 0.7979 0.7766 0.7606 0.8457 0.8351 0.8245 

2  0.8138 0.7766 0.7819 0.7819 0.766 0.7553 

3  0.8191 0.7819 0.7872 0.7766 0.766 0.7553 

 

1  0.7653 0.7766 0.7814 0.8071 0.801 0.8158 

2  0.75 0.7604 0.7577 0.7656 0.7619 0.7845 

3  0.744 0.7424 0.7475 0.7577 0.7619 0.7802 

 

1  0.7889 0.7766 0.7668 0.838 0.8278 0.8226 

2  0.7965 0.7717 0.7747 0.7772 0.7647 0.7641 

3  0.7988 0.7697 0.7753 0.7647 0.7647 0.7629 

F1-score 

 

1  0.7717 0.7766 0.7769 0.8174 0.8098 0.8182 

2  0.7611 0.7634 0.7622 0.7688 0.7627 0.7781 

3  0.7563 0.7486 0.7541 0.7596 0.7627 0.7749 

AUC 

 

1  0.8306 0.8353 0.8325 0.8599 0.8648 0.8639 

2  0.8286 0.8323 0.8269 0.8293 0.8292 0.8283 

3  0.8267 0.8328 0.8265 0.8291 0.8292 0.8286 
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Kaua i County 
Table 9 summarizes the comparison between the 1-, 2-, and 3-day wildfire probability 

Across different input-lag configurations, the ConvLSTM and ConvLSTM-Attention 
models reach R² values mostly above 0.84, with RMSE values between 0.0664 and 
0.0832 -Attention model with a 4-day input lag 
produces the highest R² values—0.8944, 0.8894, and 0.8841 for the 1-, 2-, and 3-day 
forecasts. This configuration also yields the lowest RMSE (0.0664–0.0700). The 4-day-
lag model shows RMSE reductions of 7.1%, 9.7%, and 8.0% for the 1-, 2-, and 3-day 
forecasts when compared with the 2-day-lag configuration, and reductions of 19.4%, 
15.1%, and 15.9% when compared with the 3-day-lag configuration. For all three lead 
times, the 4-day-lag ConvLSTM-Attention model yields lower MAE values than the 4-day-
lag ConvLSTM, with reductions of 4.27%, 7.27%, and 6.92% for the 1-, 2-, and 3-day 
forecasts, respectively. These comparisons show that the 4-day-lag ConvLSTM-Attention 
model provides the closest agreement with the wildfire probability estimates from Tran et 
al. (2025).  

Figures 13, 14, and 15 present the spatial comparison for the selected dates (March 27, 

wildfire probability from the 4-day-lag ConvLSTM-Attention model for the corresponding 
lead time, the middle row contains the wildfire probability maps from Tran et al. (2025), 
and the bottom row contains the absolute misfit between the forecasted and historical 
wildfire probability. The Tran et al. (2025) maps indicate the highest wildfire probability in 
the western and northeastern parts of Kaua i, and our forecasts show strong agreement 
with these regions of higher wildfire probability. Figure 13, which presents the 1-day-
ahead forecasts, shows low misfit across most of the island (R² = 0.950–0.971; RMSE = 
0.032–0.046). Figure 14 presents the 2-day-ahead forecasts and shows larger 
differences—particularly on April 8 for which the misfit increases substantially (R² 
decreases to 0.260; RMSE increases to 0.122). Figure 15 indicates that the 3-day-ahead 
forecasts have higher misfit relative to shorter lead times. The forecasts span R² values 
from 0.243 with an RMSE of 0.123 on April 8 to 0.867 with an RMSE of 0.070 
25, reflecting the expected decrease in accuracy at longer horizons. Misfit values remain 
mostly below 0.2 749, 
0.880, and 0.867 respectively) for 3-day-ahead forecasts confirm strong agreement 
between the forecasts and the wildfire probability maps from Tran et al. (2025). 
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Table 9.C
om

parison of forecasted w
ildfire probability m

aps
for 1-, 2-, and

3-day-ahead
w

ith the historical w
ildfire m

aps from
 Tran et al. (2025) for Kaua

i C
ounty.

Figure 13. (Top row
) 1-day

ahead forecasted w
ildfire probability m

aps, (m
iddle row

) historical w
ildfire probability estim

ates 
from

 Tran et al. (2025), and (bottom
 row

) the m
isfit betw

een the top and m
iddle row

s for four sam
ple days in Kaua

i
County.
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Figure 1
. (Top row

) 2-day
ahead forecasted w

ildfire probability m
aps, (m

iddle row
) historical w

ildfire probability estim
ates 

from
 Tran et al. (2025), and (bottom

 row
) the m

isfit betw
een the top and m

iddle row
s for four sam

ple days in Kaua
i 

County.
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Figure 15. (Top row
) 3-day

ahead forecasted w
ildfire probability m

aps, (m
iddle row

) historical w
ildfire probability estim

ates 
from

 Trang et al. (2025), and (bottom
 row

) the m
isfit betw

een the top and m
iddle row

s for four sam
ple days in Kaua

i County.

Table 10 sum
m

arizes the correspondence betw
een the C

onvLSTM
 and C

onvLSTM
-

Attention forecasts and the observed w
ildfire occurrence during the testing phase for 

-, 2-, and 3-day lead tim
es.

The C
onvLSTM

 m
odel show

s 
sensitivity values of 0.6410–0.8077, specificity of 0.8205–0.8974

43–0.8101, 
08–0.8621, F1-scores of 0.7353–0.8129, and AU

C
 of 0.8537–0.8729

across 
the 1–3 days

forecasts.Am
ong the tw

o m
odels, the C

onvLSTM
-Attention m

odel w
ith a 4-

day input lag provides the strongest correspondence w
ith the w

ildfire
probability records, 

w
ith the highest sensitivity values across all lead tim

es (0.7821–0.8333) and consistently 
high F1-score and AU

C
 values (0.7871–0.8387 and 0.8682–0.8964). The C

onvLSTM
-

Attention m
odel in all configurations show

 low
er sensitivity and low

er F1-scores at the 2-
day and 3-day forecasts, indicating reduced ability to detect w

ildfire events at longer lead 
tim

es.For the 1-day-ahead forecasts, the C
onvLSTM

-Attention m
odel w

ith a 4-day input 
lag increased sensitivity by 27.4%

, 
6.2%

, F1-score by 13.5%
, and AU

C
 by 4.1%

 
com

pared w
ith the 4-day-lag C

onvLSTM
 m

odel. For the 2-day-ahead forecasts, the sam
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configuration im
proved sensitivity by 28.0

4.2%
, F1-score by 10.2%

, and AU
C

 
by 0.9%

. For the 3-day-
-score, and AU

C
 increased 

by 22.0%
, 9.9%

, 7.0%
, and 1.2%

, respectively. These im
provem

ents highlight the 
enhanced ability of the C

onvLSTM
-Attention m

odel to identify w
ildfire events across all 

These findings highlight the m
odel’s potential as a 

usefultool for early w
arning system

s and proactive w
ildfire m
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ent, allow

ing for 
inform

ed decision-m
aking and resource allocation in fire-prone regions.
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Table 10. Comparison of forecasted wildfire probability maps for 1-, 2-, and 3-days ahead 
with the wildfire records for Kaua i County.  

Metric indices Lead time 
(day) 

ConvLSTM ConvLSTM-Attention 

2-day-lag 3-day-lag 4-day-lag 2-day-lag 3-day-lag 4-day-lag 

Sensitivity 

1 0.7692 0.8077 0.6538 0.8077 0.7436 0.8333 

2  0.7436 0.7692 0.641 0.8333 0.7821 0.8205 

3  0.7692 0.7436 0.641 0.8077 0.7692 0.7821 

Specificity 

1  0.8205 0.8205 0.8846 0.8205 0.8846 0.8462 

2  0.8333 0.8462 0.8974 0.7821 0.8077 0.7949 

3  0.8718 0.8718 0.8974 0.7821 0.7821 0.7949 

 

1  0.7805 0.8101 0.7188 0.8101 0.7753 0.8354 

2  0.7647 0.7857 0.7143 0.8243 0.7875 0.8158 

3  0.7907 0.7727 0.7143 0.8026 0.7722 0.7848 

 

1  0.8108 0.8182 0.85 0.8182 0.8657 0.8442 

2  0.8169 0.8333 0.8621 0.7927 0.8026 0.8000 

3  0.8571 0.8529 0.8621 0.7875 0.7792 0.7922 

 

F1-score 

 

1  0.7895 0.8129 0.7391 0.8129 0.8000 0.8387 

2  0.7785 0.8000 0.7353 0.8125 0.7922 0.8101 

3  0.8108 0.7945 0.7353 0.7975 0.7742 0.7871 

 

AUC 

 

1  0.8557 0.8711 0.8611 0.882 0.8695 0.8964 

2  0.8537 0.8729 0.8598 0.8600 0.8660 0.8679 

3  0.8549 0.8718 0.858 0.8585 0.8582 0.8682 

 

 

Forecasting results for days with wildfire events 
This section presents forecasting outcomes for the four Hawaiian counties on sample 
days that experienced wildfires and droughts. The goal was to evaluate the model’s ability 
to predict wildfires in advance and to assess how well its forecasts aligned with observed 
environmental dryness at the time of each fire event. To conduct this analysis, two days 
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with wildfire events were selected in each of the four Hawaiian counties, resulting in eight 
case studies. For each case, we assessed the model’s ability to forecast wildfire 
probability at 1-, 2-, and 3- se days.  

For Honolulu County, we assessed the ConvLSTM-Attention model’s performance for two 
0.1 

and 1 acres, respectively. The wildfire locations for these two days are marked with stars 
in Figure 16. For both days, the model successfully forecasted high wildfire probability at 
the fire locations up to three days ahead. The forecasted fire maps consistently 
highlighted the southern, western, and southwestern parts of the island, known for 
receiving a small amount of rainfall, as high-ri

high-risk areas and dryness demonstrates the model’s responsiveness to environmental 
stress (Figure 16). 

 

Figure 16. Wildfire probability forecasts for Honolulu County on July 3 and August 12, 2018, at 1-, 2-, and 3-day lead times. Fire 
locations are marked with stars. Drought classifications are also shown for the same days.  

 

Figure 17 

fires of 10 and 20 acres were observed on August 12. Across all lead times, the model 
consistently identified the fire locations as high-risk zones (shown in red), indicating high 
wildfire probability. This predictive consistency across three consecutive days 
underscores the robustness of the model, even at longer forecast horizons. The three fire 
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further validating the model’s responsiveness to meteorological stressors.  

 

Figure 17. Wildfire probability forecasts for Maui County on July 3 and August 12, 2018, at 1-, 2-, and 3-day lead times. Fire 
locations are marked with stars. Drought classifications are also shown for the same days.  

Wildfires forecasts for Hawai i County are shown in Figure 18, for August 1, 2018 and 
October 3, 2019. Wildfires on these dates had the size of 18,000 and 130 acres, 
respectively. The model forecasted high wildfire probability at both fire locations across 
all lead times. The 2018 fire occurred in an area experienci

 fire-risk under 
both moderate and severe drought conditions (Figure 18). 
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Figure 18. Wildfire probability forecasts for Hawai i County on August 1, 2018, and ctober 3, 201 , at 1-, 2-, and 3-day 
lead times. Fire locations are marked with stars. Drought classifications are also shown for the same days.  

experienced wildfires. Three fires of 0.01, 0.01, and 25 acres were recorded on August 
The largest fires on these 

dates (i.e., the 25-acre fire on August 2, 2015 and the 2000-
are marked with stars in Figure 19. For August 2, the model forecasted high probability 

which was captured by the model’s high-risk fire forecasts across all lead times (Figure 
19). 
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Figure 19. Wildfire probability forecasts for Kaua i County on August 2, 2015, and June 1 , 201 , at 1-, 2-, and 3-day lead 
times. Fire locations are marked with stars. Drought classifications are also shown for the same days. 

 

Overall, results across all four Hawaiian counties and all selected dates show that the 
model generates satisfactory wildfire forecasts. Its ability to flag high-risk zones a few 
days ahead demonstrates clear potential for deployment in real-time wildfire early warning 
systems. This predictive capability represents a significant advancement in data-driven 
fire risk management for drought-sensitive regions such as the Hawaiian Islands. 

than 100 deaths and damaged or destroyed around 3,000 buildings, leading to the 
deadliest wildfire in the U.S. in more than a century (NOAA/NCEI, 2024). The fires inflicted 

Upper Kula, as shown in Figure 20 by black polygons. To further evaluate the model 
performance, we plotted wildfire risk forecast maps for 1-, 2-, and 3-day ahead during the 
extreme wildfire event for Maui County in August 2023. The locations of these wildfires 
are shown in Figure 20. Remarkably, wildfire forecast maps from August 8 to August 11 
consistently indicated very high wildfire probabilities in Lahaina and Kula. Moreover, the 

consistency of forecasted wildfire risk with short-term drought dynamics and reinforces 

framework, such drought classifications are associated with meteorological and 
agricultural drought types. These conditions involve precipitation deficits, elevated 
evaporative demand, and soil moisture depletion, all of which critically enhance fuel 
flammability and fire potential. These results are consistent with recent studies 
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emphasizing the effect of drought on wildfires, including the work of Richardson et al. 
(2022) and Yin et al. (2024).  

 

Figure 20. Wildfire probability forecasts for 1, 2, and 3-day ahead for Maui Island from August 8 to 11, 2023 as well as 
corresponding drought classification maps 

Discussion 

The results of this study underscore the potential of deep learning models, particularly the 
ConvLSTM framework enhanced with attention mechanisms, for improving wildfire 
forecasting in the Hawaiian Islands. These findings are consistent with prior research that 
highlights the value of advanced machine learning approaches in fire risk assessment. 
For instance, Tran et al. (2025) showed that integrating the RF model with metaheuristic 
optimization techniques can improve near real-time wildfire probability estimation. The 
present study advances Tran et al. (2025)’s near real-time wildfire risk prediction to near-
future prediction. The ConvLSTM-Attention model offers superior forecasting accuracy by 

1-day-ahead 2-day-ahead 3-day-ahead Drought 
I S6°30'W I 56°0'W IS6°30'W IS6°0'W IS6°30'W IS6°0'W 

1s6°Jo•w 1s6°1s·w 1s6°o·w 

August 8 2023 

August 15 2023 

156°30'\V 1S6° 15'\V 156°0'\V 

IS6°30'W IS6°0'W 156°30'W 1s6°o·w 



40 
 

more effectively capturing both spatial and temporal patterns. The results suggest that 
deep learning architectures, especially those designed for sequential data, may 
outperform traditional machine learning methods in forecasting wildfire dynamics. 

Recent studies, including those by  Yelenik et al. (2024) and Mass and Ovens (2024), 
have documented the rising frequency of wildfires in Hawai i, attributing this trend to 
climate change, the spread of invasive vegetation, and human activities. The present 
study contributes to the existing literature by presenting a predictive framework, which 
enables short-term wildfire forecasting. The integration of attention mechanisms in the 
ConvLSTM model plays a crucial role in improving predictive accuracy. Similar findings 
have been reported in other domains, such as precipitation forecasting (Shi et al., 2015) 
and natural disaster forecast (Rahman and Siddiqui, 2019), where attention-enhanced 
LSTMs have shown improved performance in handling spatiotemporal dependencies. at 
For the 1-day-ahead forecasts, the F1-score from the 4-day-lag ConvLSTM-Attention 
model increases by 

, relative to the 4-day-lag ConvLSTM. This 
aligns with previous work by Vaswani et al. (2017), who demonstrated that attention 
mechanisms enhance neural networks’ ability to prioritize critical information in sequence-
based learning tasks.  

In this study, we utilized sequences of wildfire probabilities produced by Tran et al. (2025) 
as inputs into the ConvLSTM-Attention model. These wildfire sequences were already 
obtained by utilizing key environmental factors including maximum air temperature, 

a RF model. Future research could expand the current framework by incorporating 
additional influential variables such as soil moisture (Yelenik et al., 2024) and fuel load 
characteristics  in the ConvLSTM-Attention model to further improve 
forecast precision. Therefore, while core weather and vegetation indices (i.e., maximum 

land cover) were considered, incorporating more influential input data enhance the 
model’s accuracy. Moreover, ensemble approaches combining multiple deep learning 
architectures, as suggested by Tehrany et al. (2019), may further strengthen performance 
by leveraging diverse modeling strategies. Our use of a hybrid ConvLSTM model with 
attention mechanisms has effectively captured spatiotemporal dependencies, yet future 
research may explore further enhancements to improve generalization and robustness 
across varying time scales and regions. 

The ability to generate high-resolution predictive wildfire maps provides valuable tools for 
emergency responders, land-use planners, and policymakers. By enabling proactive 
decision-making, the proposed model supports targeted fire prevention strategies, early 
evacuation planning, and optimized resource allocation key factors in reducing wildfire 
impacts (Thompson et al., 2019). In conclusion, our study demonstrates that a 
ConvLSTM-Attention model enhances wildfire forecasting accuracy, outperforming 
traditional models in short-term forecasts. 
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Conclusion 

This study develops a hybrid deep learning framework that integrates ConvLSTM with 
attention mechanisms, optimized by the Firefly Algorithm, to forecast wildfire probabilities 
across the four Hawaiian counties. By leveraging multi-day input sequences, the 
proposed model achieves high spatial and temporal accuracy, providing wildfire forecasts 
up to three days in advance.  

Our wildfire forecasts demonstrate strong agreement with the wildfire-probability maps of 
Tran et al. (2025), with R² values exceeding 0.88 across all forecast lead times and all 
four counties—Honolulu, Maui, Hawai i, and Kaua i. RMSE values were consistently 
below 0.07 and MAE values below 0.047 across all counties and lead times. This shows 
that the model forecasts wildfire satisfactorily and in strong agreement with the wildfire 
patterns presented by Tran et al. (2025).  

Validation against recorded wildfire events indicates the reliability of the model in 
identifying fire-
Monitor were used to assess forecasted fire-prone zones, revealing strong spatial 
alignment between predicted fire risk and areas experiencing drought. This 
correspondence highlights the influence of environmental dryness on wildfire activity and 
provides ecological support for the model’s outputs. The addition of an attention 
mechanism to ConvLSTM improved the 1-day-ahead forecasts, increasing the F1-score 
by 2.7% in Honolulu County, 5.3% in County, 3.9% in Maui County, and 13.5% in 

 County, with corresponding AUC increases of 3.1%, 3.8%, 5.9%, and 4.1%, 
respectively. These improvements reflect the model's enhanced ability to extract 
meaningful spatiotemporal features and distinguish high-risk fire zones under varying 
environmental conditions. 

counties suggest that incorporating additional 
environmental variables such as soil moisture and fuel load could further enhance 
forecasting accuracy. Overall, this project demonstrates the effectiveness of attention-
based deep learning for short-term wildfire forecasting. High-resolution wildfire-probability 
forecasts enable early detection of fire conditions and provide practical information for 
land-management planning, emergency response, and policy development. 

References 

-use efficiency of Eucalyptus 
saligna and Toona ciliata in Hawaii. For. Ecol. Manage. 139. 
https://doi.org/10.1016/S0378-1127(00)00270-X 

to align and translate, in: 3rd International Conference on Learning Representations, 
ICLR 2015 -  

–114. 
https://doi.org/10.1515/9780824844264-008 



42 
 

Burgan, R.E., Fujioka, F.M., Hirata, G.H., 1974. A fire danger rating system for Hawaii. 
Fire Technol. 10. https://doi.org/10.1007/BF02589985 

https://doi.org/10.1175/1520-0442(1995)008<1697:HRAAEN>2.0.CO;2 

-climate relationships and long-lead seasonal 
 

-S., Fujioka, F., 2009. Natural variability of the Keetch–Byram drought 
–475. 

Evol. Comput. 13. https://doi.org/10.1016/j.swevo.2013.06.001 

Frazier, A.G., Giambelluca, T.W., 2017. Spatial trend analysis of Hawaiian rainfall from 
 

system for Hawaii, in: 3rd Symposium on Fire and Forest Meteorology. pp. 9–14. 

- -S., Eischeid, 

94, 313–316. 

Hawai’i. Geophys. Res. Lett. 35. https://doi.org/10.1029/2008GL034377 

An integrated GIS-based multivariate adaptive regression splines-cat swarm 
optimization for improving the accuracy of wildfire susceptibility mapping. Geocarto 
Int. https://doi.org/10.1080/10106049.2023.2167005 

to develop weather index that estimates the risk of forest fires in Lebanon & 
Mediterranean: Assessment versus prevalent meteorological indices. Case Stud. 
Fire Saf. 7. https://doi.org/10.1016/j.csfs.2016.12.001 

under the ROC curve. Mach. Learn. 77. https://doi.org/10.1007/s10994-009-5119-5 

human impact and climate. Glob. Ecol. Biogeogr. 24. 
https://doi.org/10.1111/geb.12246 

and habitat status: US Geological Survey data release. US Geol. Surv. Moffett Field, 
California, USA. 



43 
 

fire susceptibility prediction based on machine learning models with resampling 
algorithms on remote sensing data. Remote Sens. 12. 
https://doi.org/10.3390/rs12223682 

Larabi Marie-Sainte, S., Alalyani, N., 2020. Firefly Algorithm based Feature Selection for 
- Comput. Inf. Sci. 32. 

https://doi.org/10.1016/j.jksuci.2018.06.004 

https://doi.org/10.3390/biomimetics7040168 

Kagawa- -resolution 
gridded daily rainfall and temperature for the Hawaiian Islands (1990-
Hydrometeorol - -18-0112.1 

Lucas, M., 2017. Spatially Quantifying and Attributing 17 Years of Vegetation and Land 
Cover Transitions Across Hawaii. University of Hawai`i at Manoa, Honolulu. 

Near Four-
Since the 1980s. Environ. Manage. 71. https://doi.org/10.1007/s00267-022-01749-x 

Marris, E., 2023. Hawaii wildfires: did scientists expect Maui to burn? Nature. 
https://doi.org/10.1038/d41586-023-02571-z 

Forecast. 39, 1097–1115. 

McCaffrey, S., 2015. Community wildfire preparedness: A global state-of-the-knowledge 
summary of social science research. Curr. For. Reports 1. 
https://doi.org/10.1007/s40725-015-0015-7 

Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K., 2014. Recurrent models of visual 
 

-based 
learning flood forecast model with ConvLSTM hybrid algorithm. IEEE Access 9. 
https://doi.org/10.1109/ACCESS.2021.3065939 

Naidu, G., Zuva, T., Sibanda, E.M., 2023. A Review of Evaluation Metrics in Machine 
Learning Algorithms, in: Lecture Notes in Networks and Systems. 
https://doi.org/10.1007/978-3-031-35314-7_2 



44 
 

Biomedical and Health Care: Advances, Issues and Challenges. SN Comput. Sci. 
https://doi.org/10.1007/s42979-020-00320-x 

NOAA/NCEI, 2024. U.S. Billion-
NOAA Natl. Centers Environ. Inf. 

Noel, M., 
Shield, C., Smith, K., Svoboda, M., 2020. Linking drought impacts to drought severity 
at the state level. Bull. Am. Meteorol. Soc. 101. https://doi.org/10.1175/BAMS- -19-
0067.1 

methods of forest management through geospatial application: A review, in: 
Advances in Remote Sensing for Forest Monitoring. 
https://doi.org/10.1002/9781119788157.ch13 

-
plantation Hawai‘i. Appl. Geogr. 76. https://doi.org/10.1016/j.apgeog.2016.09.018 

2020. Effectiveness of Firewise Approach (FWA) in Controlling Forest Fire: A Case 

Technol. B 10. https://doi.org/10.17265/2161-6264/2020.03.006 

Rahman, M.M., Siddiqui, F.H., 2019. An optimized abstractive text summarization model 
using peephole convolutional LSTM. Symmetry (Basel). 11. 
https://doi.org/10.3390/sym11101290 

A case study of Maui, Hawai‘i. Eng. Appl. Artif. Intell. 125. 
https://doi.org/10.1016/j.engappai.2023.106699 

fire weather and drought. npj Clim. Atmos. Sci. 5. https://doi.org/10.1038/s41612-
022-00248-4 

LSTM network: A machine learning approach for precipitation nowcasting, in: 
 

-
ensemble modeling approach for the spatial prediction of tropical forest fire 
susceptibility using LogitBoost machine learning classifier and multi-source 
geospatial data. Theor. Appl. Climatol. 137. https://doi.org/10.1007/s00704-018-
2628-9 



45 
 

For. Reports. https://doi.org/10.1007/s40725-019-00101-7 

-Time Wildfire System for 
 

Trauernicht, C., 2019. Vegetation—Rainfall interactions reveal how climate variability and 
climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii. 
Sci. Total Environ. 650. https://doi.org/10.1016/j.scitotenv.2018.08.347 

Trauernicht, C., 2015. El Niño and Long- -
 

–444. 

 

 

Cross-

Applica
https://doi.org/10.1109/IC3INA48034.2019.8949568 

https://doi.org/10.2984/64.2.199 

Yang, X.S., 2009. Firefly algorithms for multimodal optimization, in: Lecture Notes in 
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-04944-6_14 

–67. 

-related wildfire 
accounts for one-third of the forest wildfires in subtropical China. Agric. For. Meteorol. 
346. https://doi.org/10.1016/j.agrformet.2024.109893 



46 
 

Zhu, T.R., Litton, C.M., 2019. Modeling fuels and wildfire behavior in Hawaiian 
ecosystems 81. 

 




