A BILL FOR AN ACT

RELATING TO GREENHOUSE GAS EMISSIONS.

BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF HAWAII:

- 1 SECTION 1. The legislature finds that transportation is
- 2 the State's largest lifecycle greenhouse gas emissions source
- 3 and that tourism is the State's largest economic driver as well
- 4 as transportation consumer. The legislature finds that better
- 5 management of waste and resources is critical to environmental
- 6 stewardship and a clean fuel standard is central to reducing the
- 7 State's lifecycle greenhouse gas emissions while also protecting
- 8 the State's economic competitiveness, public health, and the
- 9 environment. The legislature also finds that without policy
- 10 specific to the transportation sector, emissions reductions will
- 11 not be achieved in a timeframe consistent with the State's
- 12 goals. Therefore, a clean fuel standard that is technology-
- 13 neutral and market-based is an effective policy for reducing
- 14 emissions in the transportation sector while also achieving
- 15 other co-benefits.
- 16 The legislature additionally finds that by creating a clean
- 17 fuel standard that rewards environmental performance, the State

- 1 will incentivize the creation of jobs in various sectors,
- 2 including construction, agriculture, waste management, landscape
- 3 restoration, forestry, and transportation. A clean fuel
- 4 standard can create new markets for what is usually considered
- 5 waste, including but not limited to municipal solid waste;
- 6 construction and demolition debris; used cooking oil from food
- 7 processing; agricultural and forestry residuals; industrial
- 8 emissions; invasive species biomass from landscape restoration
- 9 projects; and renewable electricity. Furthermore, the demand
- 10 created for alternative fuels and cleaner forms of mobility
- 11 under a clean fuel standard will not only help reduce greenhouse
- 12 gas emissions but may also have a co-benefit of reducing air
- 13 pollution, improving the health of citizens of the State. To
- 14 prompt the use of clean fuels and zero-emission vehicles, other
- 15 states like California, Oregon, and Washington have successfully
- 16 implemented programs that reduce the carbon intensity of their
- 17 transportation fuels.
- 18 It is the intent of the legislature to support the
- 19 deployment of clean transportation fuel technologies through a
- 20 carefully designed program that reduces the carbon intensity of
- 21 fuel used in the State in order to:

1	(1)	Reduce lifecycle greenhouse gas emissions;
2	(2)	Stimulate the local, state, and regional economies,
3		thereby providing economic development;
4	(3)	Promote public and environmental health by increasing
5		sustainability and encouraging a circular economy and
6		landscape restoration activities; and
7	(4)	Support existing jobs in the clean fuel industry and
8		create new jobs in new innovative clean fuel
9		technologies.
10	Ther	efore, the purpose of this Act is to require the Hawaii
11	state ene	rgy office to adopt rules governing a clean fuel
12	standard	for alternative fuels in the State.
13	SECT	ION 2. (a) The Hawaii state energy office shall adopt
14	rules pur	suant to chapter 91, Hawaii Revised Statutes, governing
15	a clean f	uel standard for alternative fuels in the State. The
16	rules sha	ll include:
17	(1)	A schedule to phase-in the implementation of the clean
18		fuel standard for alternative fuels in a manner that
19		reduces the average carbon intensity by at least ten
20		per cent below 2019 levels by 2035 and at least fifty
21		per cent below 2019 levels by 2045, including the

1		establishment of annual carbon intensity standards for
2		alternative fuels;
3	(2)	An implementation date for the clean fuel standard for
4		alternative fuels on or before January 1, 2026;
5	(3)	Standards for measuring lifecycle greenhouse gas
6		emissions using Argonne National Lab's GREET model
7		attributable to the production and use of diesel,
8		gasoline, and other alternative fuels throughout their
9		lifecycles, including feedstock production or
10		extraction, fuel production, and the transportation of
11		raw materials and finished fuels;
12	(4)	A mechanism by which diesel and gasoline that has a
13		carbon intensity below the annual carbon intensity
14		standard is used within the State to generate credits;
15	(5)	A mechanism by which alternative fuel that has a
16		carbon intensity below the annual carbon intensity
17		standard is used within the State to generate credits;
18	(6)	A mechanism to adjust the carbon intensity of
19		alternative fuel when the alternative fuel is used in
20		a powertrain that is not equal in efficiency to that
21		of the reference fuel and drivetrain combination;

1	(7)	A mechanism by which diesel or gasoline that has a
2		carbon intensity above the annual carbon intensity
3		standard would generate a deficit;
4	(8)	A mechanism by which an alternative fuel that has a
5		carbon intensity above the annual carbon intensity
6		standard would generate a deficit;
7	(9)	A mechanism that requires diesel, gasoline, or other
8		alternative fuel that is exported from the State to
9		retire any associated credit or debit;
10	(10)	Exemptions for diesel, gasoline, or other fuels used
11		by aircraft, railroad locomotives, military vehicles,
12		and interstate waterborne vessels;
13	(11)	Procedures for verifying the validity of credits and
14		deficits generated under the clean fuel standard; and
15	(12)	A schedule by which the Hawaii state energy office
16		will review and update the lifecycle greenhouse gas
17		modeling every three years based on a review of the
18		best available scientific literature.
19	(b)	The Hawaii state energy office may adopt rules that
20	include:	

1	(1)	A cost containment mechanism designed to allow for
2		sufficient compliance flexibility and maximum
3		greenhouse gas reductions;
4	(2)	Mechanisms whereby an electric utility or an energy
5		producer can generate credits for electricity for
6		gaseous fuels used in transportation; provided that
7		the Hawaii state energy office shall develop these
8		mechanisms based on best practices in use in other
9		states and in consultation with industry stakeholders;
10	(3)	Mechanisms whereby exempt end-uses, such as aviation,
11		marine, rail, and military can opt in to the program
12		to generate credits when using alternative fuel;
13	(4)	Mechanisms whereby alternative fuel can opt in to the
14		clean fuel program to generate credits when it
15		displaces the combustion of gasoline or diesel in
16		off-road, heating, cooling, and temporary power
17		generation;
18	(5)	A schedule to phase in the implementation of the
19		standards for alternative fuels that have achieved a
20		predominant market share and have an average carbon

1		intensity that exceeds the annual diesel or gasoline
2		carbon intensity standard;
3	(6)	A program to support the deployment of infrastructure
4		for the distribution of electricity as a vehicle fuel
5		based on a mechanism by which no more than per
6		cent of the annual deficits can be allocated;
7	(7)	A program to support the deployment of new
8		technologies and infrastructure for the distribution
9		or production of liquid or gaseous alternative fuels
10		based on a mechanism by which no more than per
11		cent of the annual deficits can be allocated;
12	(8)	Any standards, specifications, testing requirements,
13		and other measures as needed to ensure the quality of
14		gasoline, diesel, and alternative fuels used in
15		accordance with the clean fuel standard;
16	(9)	Linking the clean fuel standard to similar policies in
17		other jurisdictions, including but not limited to
18		California, Washington, and Oregon;
19	(10)	A method to utilize the carbon intensity pathways
20		already approved in other states like California,
21		Oregon, and Washington to reduce the burden of

1		administering and certifying the carbon intensity of	
2		transportation fuels in the clean fuel program;	
3	(11)	Mechanisms that allow credits to be traded and to be	
4		banked for future compliance periods; and	
5	(12)	Exemptions for diesel, gasoline, and alternative fuels	
6		that are used in volumes below thresholds established	
7		by the Hawaii state energy office.	
8	(c)	As used in this section:	
9	"Alt	ernative fuel" means any fuel that is not gasoline or	
10	diesel and is used for transportation purposes, including but		
11	not limited to ethanol, biomass-based diesel, renewable diesel,		
12	sustainable aviation fuel, electricity, biomethane, biogasoline,		
13	renewable natural gas, fuels from carbon capture and		
14	utilization, electrofuels, and hydrogen.		
15	"Car	bon intensity" means the quantity of lifecycle	
16	greenhouse gas emissions per unit of fuel energy, expressed in		
17	grams of carbon dioxide equivalent per megajoule.		
18	"Clean fuel standard" means standards for the reduction of		
19	greenhouse gas emissions, on average, per unit of fuel energy.		
20	"Greenhouse gas" means carbon dioxide, methane, nitrous		
21	oxide, hy	drofluorocarbons, perfluorocarbons, sulfur	

Page 9

- 1 hexafluoride, and any other gas or gases designated by the
- 2 Hawaii state energy office by rule.
- 3 SECTION 3. This Act shall take effect on July 1, 3000.

Report Title:

Hawaii State Energy Office; Clean Fuel Standard; Greenhouse Gases; Alternative Fuels; Rules

Description:

Requires the state energy office to adopt rules governing a clean fuel standard for alternative fuels in the State. Effective 7/1/3000. (HD1)

The summary description of legislation appearing on this page is for informational purposes only and is not legislation or evidence of legislative intent.

2024-2270 SB2768 HD1 HMSO

