HB 1663 HD1

LINDA LINGLE Governor

SANDRA LEE KUNIMOTO Chairperson, Board of Agriculture

> DUANE K. OKAMOTO Deputy to the Chairperson

State of Hawaii DEPARTMENT OF AGRICULTURE 1428 South King Street Honolulu, Hawaii 96814-2512

TESTIMONY OF SANDRA LEE KUNIMOTO CHAIRPERSON, BOARD OF AGRICULTURE

BEFORE THE SENATE COMMITTEE ON ENERGY AND ENVIRONMENT THURSDAY, MARCH 19, 2009 3:45 P.M. ROOM 225

HOUSE BILL NO. 1663, HD1 RELATING TO TARO SECURITY

Chairperson Gabbard and Members of the Committee:

Thank you for the opportunity to testify on House Bill No. 1663, HD1. The purpose of this bill is to prohibit the development, testing, propagation, release, importation, planting, and growing of genetically modified Hawaiian taro in the State of Hawaii. In addition, this bill restricts the genetic modification of non-Hawaiian taro only to enclosed laboratories where access is denied to the general public and prohibits outdoor field testing or release of genetically modified taro within the State of Hawaii. The Department offers comments.

Agriculture, from its beginning to present, has suffered from pest and disease infestation causing enormous, unpredictable losses in food production. Biotechnology is a critical tool used in many countries to combat crop threatening insects and diseases. Without the biotech development of the ringspot virus resistant papaya, all papaya production in Hawaii, both conventional and organic would have been devastated by the disease. The loss of taro or any major industry in agriculture, by any means, would be devastating to Hawaii. However, advancements in biotechnology exist only through continued research. HB1663, HD1 Page 2

While the department generally does not agree with banning the use of scientifically acceptable technology, we recognize that this House Draft 1 version attempts to reconcile the cultural issue and the need for research. The Department acknowledges and respects the testimony of the Kauai Taro Growers Association, that in deference to the Hawaiian culture, no genetically engineered research should be done on stated Hawaiian cultivars and that research on non-Hawaiian cultivars shall be limited to approved facilities only with no outdoor field testing or release of genetically engineered taro within the State of Hawaii.

Agriculture is already at a critical state as battles rage over water, land and limited resources. Let us continue to support co-existence among all agriculture sectors.

DEPARTMENT OF BUSINESS, ECONOMIC DEVELOPMENT & TOURISM

No. 1 Capitol District Building, 250 South Hotel Street, 5th Floor, Honolulu, Hawaii 96813 Mailing Address: P.O. Box 2359, Honolulu, Hawaii 96804 Web site: www.hawaii.gov/dbedt Telephone: (808) 586-2355 Fax: (808) 586-2377

LINDA LINGLE GOVERNOR THEODORE E. LIU DIRECTOR MARK K. ANDERSON

DEPUTY DIRECTOR

Statement of **THEODORE E. LIU Director** Department of Business, Economic Development, and Tourism before the **COMMITTEE ON ENERGY AND ENVIRONMENT** Thursday, March 19, 2009 3:45 p.m. State Capitol, Conference Room 225

in consideration of HB 1663 HD1 RELATING TO TARO SECURITY.

Chair Gabbard, Vice Chair English and Members of the Committee.

The Department of Business, Economic Development, and Tourism (DBEDT) supports HB 1663 HD1 which would establish a ban on developing, testing, propagating, releasing, importing, planting, and growing of genetically modified Hawaiian taro in the State of Hawaii; restrict the genetic modification of non-Hawaiian taro only to enclosed laboratories where access is denied to the general public; and prohibit outdoor field testing or release of genetically modified taro within the State of Hawaii. We believe that this version of the bill has taken into consideration the concerns of all stakeholders and developed acceptable compromise language.

1

Thank you for the opportunity to provide these comments.

Council Chair Danny A. Mateo

Vice-Chair Michael J. Molina

Council Members Gladys C. Baisa Jo Anne Johnson Sol P. Kahoʻohalahala Bill Kauakea Medeiros Wayne K. Nishiki Joseph Pontanilla Michael P. Victorino

Director of Council Services Ken Fukuoka

COUNTY COUNCIL COUNTY OF MAUI 200 S. HIGH STREET WAILUKU, MAUI, HAWAII 96793 www.mauicounty.gov/council

March 17, 2009

TO: Honorable Mike Gabbard, Chair Committee on Energy & environment

- FROM: Bill Kauakea Medeiros Council Member, East Maui
- DATE: Thursday, March 19, 2009 @ 3:45 in Conference Room 225 State Capitol, 415 South Beretania Street

SUBJECT: Support of HB 1663, HD1, RELATING TO TARO SECURITY

I support HB 1663 for the following reasons:

1. Kalo (Taro) is an important food crop in Hawaii which is a complex carbohydrate whose hypo-allergenic properties are life-saving for those with digestive disorders and allergies and the health implications of non-taro genes in genetically engineered kalo have never been tested, nor have they been approved for human consumption.

2. Cold water and adjusting growing regimes will reduce the threat of damaging taro disease, and as raw taro and value-added taro products represent a multi-million dollar crop in Hawaii with great potential for further growth as the State moves towards food security and self-sufficiency, it is important to note that neither of these issues requires a genetically engineered taro solution.

3. Millers and consumers have specifically and consistently rejected the use of genetically modified taro or poi.

For these reasons I humbly ask the committee on Energy and Environment to recommend passage of HB 1663. Thank you.

Council Chair Danny A. Mateo

Vice-Chair Michael J. Molina

Council Members Gladys C. Baisa Jo Anne Johnson Sol P. Kaho'ohałahala Bill Kauakea Medeiros Wayne K. Nishiki Joseph Pontanilla Michael P. Victorino

Director of Council Services Ken Fukuoka

COUNTY COUNCIL COUNTY OF MAUI 200 S. HIGH STREET WAILUKU, MAUI, HAWAII 96793 www.mauicounty.gov/council

March 18, 2009

TO: Honorable Mike Gabbard, Chair Senate Committee on Energy and Environment

FROM:

Danny A. Mateo Council Chair

SUBJECT: HEARING OF MARCH 19, 2009; TESTIMONY TO PROVIDE COMMENTS ON HB 1663, HD1, RELATING TO TARO SECURITY

Thank you for the opportunity to provide comments on this important measure. The purpose of this measure is to prohibit the development, testing, propagation, release, importation, planting, or growing of genetically modified Hawaiian taro in the state. This measure also prohibits certain activities related to genetically modified non-Hawaiian taro.

The Maui County Council has not had the opportunity to take a formal position on this measure. Therefore, I am providing this testimony in my capacity as an individual member of the Maui County Council.

I offer the following comments on this measure:

- 1. Kalo has tremendous agricultural, cultural, and traditional significance to the residents of Hawaii. Genetically modified taro is disrespectful of the cultural foundation that taro holds for Hawaii's people. Therefore, I support the intent of this measure to protect traditional types of Hawaiian taro.
- 2. The attached Maui County Resolution No. 08-31 is indicative of Maui County's support of State legislation to protect our native taro.
- 3. While I support the intent of this measure, I am disappointed that this measure does not designate enforcement authority to an agency that has the proper resources to regulate this type of activity.

Thank you for your consideration of my testimony.

ocs:proj:legis:09legis:09testimony: hb1663,hd1_paf09-082a_ltt

Resolution

No. <u>08-31</u>

URGING SUPPORT OF SENATE BILL NO. 958, RELATING TO GENETICALLY MODIFIED ORGANISMS

WHEREAS, Senate Bill No. 958, currently pending before the Hawaii State Legislature, will impose a ten-year moratorium on developing, testing, propagating, cultivating, growing, and raising genetically-engineered taro in the State; and

WHEREAS, kalo, the Hawaiian word for taro, is a culturally significant plant to the kanaka maoli, Hawaii's indigenous peoples; and

WHEREAS, kalo is an integral part of the Native Hawaiian culture and represents Haloa, the elder brother of man, and genetically altering the structure of the taro plant represents a defilement of the genealogical link between the two; and

WHEREAS, today, there remain approximately 85 varieties of kalo out of the hundreds that were known in Hawaii and, of these, the majority, approximately 69 varieties, are unique to the Hawaiian islands due to the horticultural skills of native Hawaiian farmers; and

WHEREAS, farmers, Hawaiian groups, and private individuals have expressed their concerns that genetically-modified taro will destroy the genetic strains of native taro species, and is disrespectful of the cultural foundation taro holds for Native Hawaiians and their religious practices; and

WHEREAS, kalo is a healthy and nutritious staple in the diets of many residents throughout the State of Hawaii; and

WHEREAS, the important cultural relationship between kalo and the kanaka maoli expresses the spiritual and physical well-being of not only the kanaka maoli and their heritage, but also symbolizes the environmental, social, and cultural values important to the State of Hawaii; and

WHEREAS, kalo continues to have tremendous agricultural, cultural, and traditional significance to the residents of our County and State; and

WHEREAS, cross-pollination of genetically-modified kalo would place an immeasureable threat on traditional varieties; and

WHEREAS, the amount of usable land for raising kalo is scarce in the County of Maui, and any negative impact would devastate the kalo industry in the County of Maui; and

WHEREAS, experimenting with the genetic engineering of this crop, without thoroughly examining and evaluating the adverse effects of that process, is careless and could have far-reaching, irreversible, and unintended consequences; and

WHEREAS, the purpose of Senate Bill No. 958 is to recognize the importance of kalo in the heritage of the State, by creating a ten-year moratorium on developing, testing, propagating, cultivating, growing, and raising of genetically-engineered kalo in the State of Hawaii; now, therefore,

BE IT RESOLVED by the Council of the County of Maui:

- 1. That it hereby urges support of Senate Bill No. 958, which will protect the biological lifeblood of the State from irreparable harm; and
- 2. That certified copies of this resolution be transmitted to the Honorable Charmaine Tavares, Mayor, County of Maui; the Honorable Linda Lingle, Governor, State of Hawaii; the State House of Representatives; the State Senate; Sandra Lee Kunimoto, Director, State Department of Agriculture; Andrew Hashimoto, Dean, College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa; Harold Keyser, CTAHR, Maui Community College; Penny Levin; Steven Hookano; Pauahi Hookano; Victor Pellegrino; and Walter Ritte.

pwf:misc:069areso02:scj

COUNCIL OF THE COUNTY OF MAU

WAILUKU, HAWAII 96793

CERTIFICATION OF ADOPTION

It is HEREBY CERTIFIED that RESOLUTION NO. 08-31 was adopted by the Council of the County of Maui, State of Hawaii, on the 4th day of April, 2008, by the following vote:

MEMBERS	G. Riki HOKAMA Chair	Dennis A. MATEO Vice-Chair	Michelle ANDERSON	Giadys C. BAISA	Jo Anne JOHNSON	William J. MEDEIROS	Michael J. MOLINA	Joseph PONTANILLA	Michael P. VICTORINO
ROLL CALL	Ауе	Aye	Excused	Ayə	Ауө	Aye	Aye	Aye	Aye

COUNTY CLERK

HB 1663, HD 1, RELATING TO TARO SECURITY Senate Committee on Energy and Environment

March 19, 2009 3:45 p.m. Room: 225

The Office of Hawaiian Affairs (OHA) SUPPORTS, with amendments H.B. 1663, H.D. 1, which would prohibit any individual from developing, testing, propagating, releasing, importing, planting or growing genetically modified taro in Hawaiÿi. We much preferred H.B. 1663, which did not incorporate amendments that would limit most of the protections afforded only to "Hawaiian taro", and only prohibit certain activities related to genetically modified "non-Hawaiian" taro. We are concerned that cross pollination is very difficult to prevent, and our main intention is to protect Häloa. Nonetheless, OHA supports the original intent of this measure as an important recognition of a plant that has genealogical, spiritual and cultural links with Native Hawaiians and Hawai'i. Furthermore, kalo is integral to the identity of Native Hawaiians and, thus, the State of Hawai'i as a whole.

The traditional moÿolelo of Wäkea and Papahänaumoku explains that the first kalo plant, Häloanakalaukapalili, is the elder brother of Native Hawaiians. As the elder sibling, Häloa provides sustenance to Native Hawaiians, and in return, we, the younger sibling, care for him and ensure that he flourishes. The bond that connects Native Hawaiians to kalo remains a sacred one, and our kuleana dictates that we preserve that bond and protect Häloa. A living entity of this eminence cannot be modified or scientifically "improved." He must be honored and left alone.

OHA recognizes that Häloa is facing many challenges today, including diseases, invasive species and a dearth of water and farmable land. However, we believe that there are natural alternatives to genetic engineering - such as fallowing loÿi, restoring stream flows and improving the overall health of the environment - that have yet to be fully explored. We suggest scientists work with kalo farmers and the Native Hawaiian community to conduct a complete and comprehensive examination of these natural methods, which are neither intrusive nor offensive to Häloa or our culture.

OHA respectfully urges the committee to PASS H.B. 1663, H.D. 1, by amending it back to the original language in H.B. 1663. Mahalo for the opportunity to testify.

UNIVERSITY OF HAWAI'I SYSTEM

Legislative Testimony

Testimony Presented Before the Senate Committee on Energy and Environment Thursday, March 19, 2009 at 3:45 p.m. by James R Gaines Vice President for Research, University of Hawai'i

HB1663HD1 RELATING TO TARO SECURITY

The University of Hawai'i (UH) is sensitive to and mindful of the spiritual and cultural significance of taro in Hawai'i and believes that the compromises offered in HB1663HD1 provide a foundation upon which constructive work on known threats to taro can be conducted. However, from previous testimony on this bill we understand that the most significant issues affecting taro in Hawai'i, invasive species and diseases associated with imported taro and issues related to agriculture such as access to land, reduced numbers of farmers, water quality and loi health, are not being addressed by this legislation.

The UH must reiterate that research is not the problem nor is it a threat to Hawaiian taro. Research is not a cultural issue and we respectfully oppose the passage of this bill.

Nonetheless, the University of Hawai'i (UH) accepts and will abide by the compromise language of HB1663HD1 that prohibits the genetic modification of any Hawaiian taro varieties and restricts genetic modification and testing of non-Hawaiian taro to enclosed laboratories where entry into such a laboratory is prohibited to the general public.

The UH will continue to participate on the Taro Task Force in order to help farmers identify and implement solutions that will address the multitude of existing threats to taro in Hawaii. We believe it would be prudent for this Legislature to examine the outcomes of the Taro Task Force's efforts before supporting any further legislation regarding restrictions on taro research in our state.

Thank you for the opportunity to testify on this bill.

Testimony Presented before the

Committee on Energy and Environment.

Sen. Mike Gabbard, Chair Sen. Kalani English, Vice Chair

Date: Thursday, March 19 Time: 3:45 p.m. Place: Rm 225 State Capitol 415 South Beretania Street

by

Richard M. Manshardt, Professor Department of Tropical Plant & Soil Sciences College of Tropical Agriculture and Human Resources University of Hawai'i at Mānoa

RELATING TO **HB1663 HD1**, REGARDING GENETICALLY ENGINEERED TARO. This bill prohibits the development, testing, propagation, release, importation, planting, and growing of genetically modified Hawaiian taro in the State of Hawaii. My name is Richard Manshardt. I am a professor and plant geneticist in CTAHR at UH Manoa. I have 25 years of research and teaching experience in crop sciences at UH, including work in conventional crop breeding and the development of genetically engineered virus-resistant papaya varieties for Hawaii growers. I am providing testimony on my own behalf, not officially presenting the position of CTAHR or UH on this bill.

I respectfully oppose HB1663 HD1.

Most of the text of this bill tells of the spiritual significance of taro in the Hawaiian culture. The drafters of the bill hold the taro plant in special regard, connecting it with the origin of Hawaiian culture, much as others in our multicultural society place the body and blood of Jesus Christ in the central role of the Christian community. We are guaranteed our freedom of belief by the first amendment to the US Constitution, and this is good and right.

But if one group's beliefs are used to justify restricting the actions of others, that may not be good or right. The stated objective of HB1663 HD1 is to impose a moratorium on research or production of genetically engineered Hawaiian taro, but there is no logical development of ideas to show why a moratorium is appropriate. The bill doesn't explain the connection between taro's spiritual importance and genetic engineering, so the reader is left to conclude that the drafters of the bill want the moratorium because genetically engineered taro violates their belief in a genealogical relationship to taro. The bill basically says, "You can't use genetic engineering to improve taro, because we don't like that idea, and no other justification is needed."

Because agriculture is dynamic, with crop varieties, weather conditions, and pests that influence production changing from year to year, researchers need all the tools they can get to protect and improve farm production. In my experience, genetic engineering is a useful, effective, and safe tool for crop improvement. Genetic engineering is not appropriate for all breeding objectives and is not going to replace conventional breeding methodologies based on cross-pollination, but a moratorium on its application to taro or any other crop is not going to serve the long term interests of growers or consumers in Hawaii. At a minimum, we need to be able to do genetic engineering research to properly evaluate the risk/benefit ratio of this approach in improving taro. Please remember that new variety development, whether by conventional means or genetic engineering, is a decade-long process and cannot be turned on and off arbitrarily.

The legislature has a clear role here to support the concept that technical problems need to be addressed and resolved in a scientific context, where logical thinking based on experimental data is foremost, rather than religious, cultural, or political considerations.

Thank you for this opportunity to testify, and I ask you to please vote against HB1663 HD1.

Senate Hearing:HB 16632009 Regular SessionTitle:Genetically Modified Taro; Prohibition

COMMITTEE ON ENERGY & ENVIRONMENT

Sen. Mike Gabbard, Chair Sen. Kalani English, Vice Chair

Position: Support with reservations

Submitted By: Robert Paull, Honolulu, HI 96821

Testimony:

I have been a Professor at the University of Hawaii at Manoa for nearly thirty years in the area of crop production and plant sciences. I have been involved in plant sciences and plant breeding for forty years and published in journals on the use of this technology. This testimony is submitted as a private citizen and voter, and not as a representative of the University.

In the last five years, the legislature has considered a number of Bills on genetic engineered crops. All these bills are designed to place restrictions on this technology and limit freedom of choice. The Bills are not science or risk-based but based upon the misuse and abuse of science, and belief that there must be a possible unknown risk. All the Bills heard by the Legislature refuse to compare risks amongst all plant breeding methods.

There is a claim in this Bill that diseases can be controlled by using cold water and adjusting growing regime. If this is the case then why have not the diseases been controlled and therefore no longer a problem. This control method probably does not work for a new viral disease. Banning the use of genetic engineering limits the approaches available to solve present and potential future problems.

In addition, this Bill in the definitions excludes non-directed mutagenesis. Non-directed mutagenesis is done with high levels of irradiation and very toxic chemicals. The exclusion is not justified on scientific grounds as the National Research Council has concluded that this technology has a greater potential for unwanted changes than genetic engineering. It is not obvious how this exclusion requirement help human health or the environment or in this Bill the "cultural integrity of kalo".

The definitions in this Bill are so overly broad with no definition of "traditional methods of breeding, hybridization, or non-directed mutagenesis." Later in the Bill it talks about "controlled hand-pollination" suggesting this is the only method allowed. This means that all breeding methods including tissue culture developed in the last 100 years are banned to improve taro in Hawaii.

It is unclear which 'Bun-Long' (Chinese) taro is referred to in this Bills. In China, the general term "Bun-Long" is used to refer to a number of very distinct varieties of taro depending upon where it is being grown. Since different "Bun-Long" taro varieties have been brought to Hawaii in the last fifty years from South-East Asia, Taiwan and China are they covered by this ban.

This amended House Bill is a compromise that will allow research to continue and all approaches to solving taro production problems to be evaluated.

HAWAII FARM BUREAU FEDERATION

2343 ROSE STREET HONOLULU, HI 96819

Committee on Energy and Environment

Hearing Date & Time: Wednesday, 3-19-09 3:45 pm

HB 1663 HD1 Relating to Taro Security

Chairman Gabbard and Members of the Committee,

The Hawaii Farm Bureau Federation is the largest general agriculture organization in the State of Hawaii with over 1600 members Statewide supports.

HFBF comes before you today in support of our commercial taro farmers across the State. HFBF and all of our farmers respect the cultural significance of taro. We do not question the desire to have a population of cultural significant varieties kept in its' "pure" form.

Farm Bureau policy on sustainability declares the importance of flexibility in cropping practices for successful agriculture. Our policy also clearly opposes limitations on the production or use of genetically modified crops.

While we recognize the cultural significance of the plant, we also believe there is a major commercial role for taro in Hawaii. Before you today are the growers who provide the majority if not all of the taro you and I eat. Commercial farmers and ranchers are in constant search of new technologies to advance the long term sustainability and viability of their operations. Genetic modification of crops is the latest technology that has advanced the development of new varieties providing farmers with a tool to outpace the increasing costs faced by the industry. Contrary to frequent statements, GM crops are among the most tested to be introduced into the fields. They are subjected to experiments and analysis far beyond that for conventional or mutational breeding processes. For us in Hawaii, the results are tangible. Without GM, the papaya industry would not exist and the pockets of organic papaya would not be possible due to the prevalence of the Ringspot virus.

All of these technologies take time. When one recognizes the urgency to develop the technology because of a problem it will be too late. We urge the committee to consider all of the ramifications as decision on this measure is made. What is the decision between having a GM taro or having no taro? The preamble to this measure extols the value of taro. It truly is an incredible plant that everyone should be able to have access when and if they want it. It would truly be a shame if we are not doing all we can to make sure taro is available for everyone for many generations to come. It is also

important that the capacity to develop critical crop characteristics whether it be disease resistance or traits such as improved nutritional value be here in Hawaii.

Despite statements to the contrary, techniques are available to protect the genetic integrity of culturally important varieties and we strongly support the implementation of those practices for cultural plantings in contrast to commercial plantings.

Hawaii Farm Bureau is in support of our commercial taro farmers who provide the majority of taro in the marketplace. They grow the poi everyone eats. While we do not support any moratoriums, HFBF is willing to compromise by recognizing a moratorium on named Hawaiian varieties to protect the right to research other taro varieties to protect the right of acess of this important crop for future generations. Our farmers have invested significant amount of time on this measure and we feel it is in everyone's benefit to reach a conclusion. We believe the risk to this crop is great enough to take this position. At this same time, we are on record that we will not accept any other moratoriums on any other crops in the future.

Thank you for this opportunity to provide comment on this measure.

Respectfully submitted,

Dean Okimoto, President Hawaii Farm Bureau

Hawaii Agriculture Research Center

92-1770 Kunia Road Kunia, Hawaii 96759 Ph: 808-621-1350/Fax: 808-621-1359

TESTIMONY BEFORE THE SENATE COMMITTEE ON ENERGY & ENVIRONMENT

HOUSE BILL 1663HD1

RELATING TO TARO SECURITY

March 19, 2009

Chair Gabbard and Members of the Committee:

HARC

My name is Stephanie Whalen. I am the Executive Director of the Hawaii Agriculture Research Center (HARC). I am testifying today on behalf of the center and its research and support staff.

HARC supports the intent of House Bill 1663 HD1, Relating to Taro Security which is an attempt to reach a compromise and further discussion over the highly emotive legislation regarding taro and the use of biotechnology. The research community has already agreed to limit research in this area with respect to Hawaiian taro and the process to commercialize an engineered plant requires grower commitment and involvement. Therefore even without this measure there is no likelihood of an engineered taro being commercialized. However, passage of this bill would provide further assurances to the Hawaiian community that this would not occur while not limiting those of a different philosophy the access to this technology.

Thank you for this opportunity to provide comments for your consideration.

Testimony for ENE 3/19/09 3:45PM HB1663HD1

Conference Room: 225 Testifier Position: Support Unamended Testifier will be present: No Submitted by: Rodney Haraguchi, President Organization: Kaua'i Taro Growers Association (KTGA) Address: P. O. Box 427, Hanalei, Hawaii 96714 Phone: (808)826-6202 E-mail: <u>hvtaro@hawaiiantel.net</u> Submitted on: 3/19/09

Chair Senator Gabbard, Vice Chair Kalani English and committee members:

Mahalo for the opportunity to present our testimony to support this bill in its present form and request that it be unamended. We have been receiving calls from Hawai`i, Maui, Oahu and the mainland threatening to boycott our taro farm and two other millers, unless we support the SB 709. Even though we feel it's an invasion of our privacy and hurts the taro industry and ultimately the taro farmers, we feel even more strongly, that the 42 taro farms representing 396 acres oppose a ban on research of non-Hawaiian varieties of taro, must be heard.

The taro industry has been on a steady decline from 1948 when there was 14,000,000 pounds of taro, to 6,800,000 in 2000 and now 4,300,000 pounds that correlates with the decline in taro farms. This decline is the result of many facets and just remedying a few problems is not the answer. Taro farmers look at all avenues which includes continuing research on the non Hawaiian varieties.

Both organic and conventional taro farms suffer from a mild form of leaf blight that organic practices have not cured. And this leaf blight exists on dry land taro where cold water is not the issue. So how will taro survive when the severe form of leaf blight like the ones in Samoa and the Soloman Islands arrives in Hawai`i? Farmers in Hanalei are already working with CTAHR and HARC to eradicate the apple snails with nontoxic natural extracts which proved successful. They are also experimenting with compost, green manure, cover crops and organic fertilizers to transition to sustainable methods. And research is another option that should be available to find remedies and sometimes unexpected remedies. Taro farming is affected by many facets and farmers need to be open to the options available.

Kauai taro farmers provide 78% of the state supply of 4,300,000 pounds. Kauai farmers also have the highest yield per acre at 13,600 lb/acre and Oahu/Maui at 10,533 lb/acre and Big Island at 4,222 lb/acre. The following calculation is the amount of servings per week that the Kauai taro farmers supply the state.

4,300,000 X 78% = 3,354,000 lbs from Kauai 3,354,000 lb X 4 (servings per lb) = 13,416,000 servings 13,416,000 servings / 52 weeks = 258,000 servings per week We support the Native Hawaiian culture and that there be no GMO research on the Hawaiian varieties. And that all research on non-Hawaiian varieties is done in a safe and permitted facility that is secured from the general public and that no open field test is conducted in Hawaii.

According to DOA, new pests and diseases are entering uninspected since 2006, due to a change in federal procedures since 9/11 that doesn't allow our state inspectors to check the 900,000+ pounds of taro entering Hawaii per year. From 1997 to 2005 there were over 345 insects, mollusks, weeds and nematodes (and this does not include possible bacteria, fungus or diseases) that the state inspectors used to stop prior to 2006 and it would be a matter of time before a disease like the one in the Soloman Islands that decimated the taro crops. The insect vector required to transmit this disease is found in Hawaii.

Dr Miyasaka's team inserted an oxalate oxidase gene from wheat in Chinese Bun Long taro that increased tolerance to the leaf blight. Based on this research, they can look for similar genes found naturally within the Hawaiian taro gene pool and improve disease resistance using conventional cross pollination with existing non-GMO varieties. This will also allow them to identify which taro variety has the specific gene their looking for, and then to cross breed with better accuracy, to avoid matching plants by trial and error, which takes many trials and a lot of time finding the right one in a process of elimination.

This bill will remove the option of using genetic engineering as a tool to identify important disease resistance genes within the taro gene pool. GE is a very precise method of identifying and selecting the gene which may be resistant to leaf blight diseases. We want it to be very clear that there are no GMO taro plants in any fields, that there is no GMO taro to plant.

The taro farmers are asking for help to preserve their livelihood and future, by not banning research on the other varieties that may someday provide an answer to a disease or problem that may occur. The 68 Hawaiian taro varieties remaining today will be vulnerable to the diseases that may arrive in Hawai'i. To start research at the time of occurrence will be too late and time will be wasted to undo the ban while the taro crops decline.

There are some inferences that the commercial taro farmers are only after the money, control and profit, but that is not the case. With the price of poi reaching up to \$8.99 - \$10.00 (Whole Foods store) per pound of poi in Hawaii, the farmers are only receiving 6% of that at \$.60 per pound. Many years back our farm had been approached by large firms that are willing to buy huge quantities of taro from us that would have left no taro for the poi market. Even though we could get a better price for our taro, we didn't want to leave our locals without poi.

This issue has divided farmers, families and communities within Hawaii, and many don't see the bigger picture, that other countries see Hawaii's taro shortages as an opportunity and that there's a market to import taro. In Australia, there's a Taro Growers Association

comprised of 50 farmers and increasing. There are considerations for the government to assist in funding for mechanization to increase production for the farmers. They also hold conferences and are looking at research to deal with the Samoan leaf blight and other diseases that may affect their industry. There's also taro from China that is supplying McDonald's taro pie and they probably would prefer to have Hawaiian taro for better marketing and public relations.

In my perspective, every farmer, whether big or small, full time or part time, works hard and I respect them for continuing this way of life. In doing so, this is the farmers' satisfaction, having the consumers enjoy our product. Statistics show the declining trend for taro farming in Hawaii and the taro farmers need help and are asking for help so that you will not say to us, "Why didn't you tell us?" And what will be the answer when the poi consumers ask, "Where's our poi, So let's support our Hawaii taro farmers so that there will be Hawaiian taro and poi in the future and not taro from Australia, China, Malaysia, Costa Rica, Puerto Rico and the largest exporter of taro at this time – Africa. Testimony for ENE 3/19/09 3:45PM HB1663HD1

Conference Room: 225 Testifier Position: Support Unamended Testifier will be present: No Submitted by: Rodney Haraguchi, President Organization: Kaua`i Taro Growers Association (KTGA) Address: P. O. Box 427, Hanalei, Hawaii 96714 Phone: (808)826-6202 E-mail: <u>hvtaro@hawaiiantel.net</u> Submitted on: 3/19/09

Chair Senator Gabbard, Vice Chair Kalani English and committee members:

Mahalo for the opportunity to present our testimony to support this bill in its present form and request that it be unamended. We have been receiving calls from Hawai'i, Maui, Oahu and the mainland threatening to boycott our taro farm and two other millers, unless we support the SB 709. Even though we feel it's an invasion of our privacy and hurts the taro industry and ultimately the taro farmers, we feel even more strongly, that the 42 taro farms representing 396 acres oppose a ban on research of non-Hawaiian varieties of taro, must be heard.

The taro industry has been on a steady decline from 1948 when there was 14,000,000 pounds of taro, to 6,800,000 in 2000 and now 4,300,000 pounds that correlates with the decline in taro farms. This decline is the result of many facets and just remedying a few problems is not the answer. Taro farmers look at all avenues which includes continuing research on the non Hawaiian varieties.

Both organic and conventional taro farms suffer from a mild form of leaf blight that organic practices have not cured. And this leaf blight exists on dry land taro where cold water is not the issue. So how will taro survive when the severe form of leaf blight like the ones in Samoa and the Soloman Islands arrives in Hawai'i? Farmers in Hanalei are already working with CTAHR and HARC to eradicate the apple snails with nontoxic natural extracts which proved successful. They are also experimenting with compost, green manure, cover crops and organic fertilizers to transition to sustainable methods. And research is another option that should be available to find remedies and sometimes unexpected remedies. Taro farming is affected by many facets and farmers need to be open to the options available.

Kauai taro farmers provide 78% of the state supply of 4,300,000 pounds. Kauai farmers also have the highest yield per acre at 13,600 lb/acre and Oahu/Maui at 10,533 lb/acre and Big Island at 4,222 lb/acre. The following calculation is the amount of servings per week that the Kauai taro farmers supply the state.

4,300,000 X 78% = 3,354,000 lbs from Kauai 3,354,000 lb X 4 (servings per lb) = 13,416,000 servings 13,416,000 servings / 52 weeks = 258,000 servings per week We support the Native Hawaiian culture and that there be no GMO research on the Hawaiian varieties. And that all research on non-Hawaiian varieties is done in a safe and permitted facility that is secured from the general public and that no open field test is conducted in Hawaii.

According to DOA, new pests and diseases are entering uninspected since 2006, due to a change in federal procedures since 9/11 that doesn't allow our state inspectors to check the 900,000+ pounds of taro entering Hawaii per year. From 1997 to 2005 there were over 345 insects, mollusks, weeds and nematodes (and this does not include possible bacteria, fungus or diseases) that the state inspectors used to stop prior to 2006 and it would be a matter of time before a disease like the one in the Soloman Islands that decimated the taro crops. The insect vector required to transmit this disease is found in Hawaii.

Dr Miyasaka's team inserted an oxalate oxidase gene from wheat in Chinese Bun Long taro that increased tolerance to the leaf blight. Based on this research, they can look for similar genes found naturally within the Hawaiian taro gene pool and improve disease resistance using conventional cross pollination with existing non-GMO varieties. This will also allow them to identify which taro variety has the specific gene their looking for, and then to cross breed with better accuracy, to avoid matching plants by trial and error, which takes many trials and a lot of time finding the right one in a process of elimination.

This bill will remove the option of using genetic engineering as a tool to identify important disease resistance genes within the taro gene pool. GE is a very precise method of identifying and selecting the gene which may be resistant to leaf blight diseases. We want it to be very clear that there are no GMO taro plants in any fields, that there is no GMO taro to plant.

The taro farmers are asking for help to preserve their livelihood and future, by not banning research on the other varieties that may someday provide an answer to a disease or problem that may occur. The 68 Hawaiian taro varieties remaining today will be vulnerable to the diseases that may arrive in Hawai'i. To start research at the time of occurrence will be too late and time will be wasted to undo the ban while the taro crops decline.

There are some inferences that the commercial taro farmers are only after the money, control and profit, but that is not the case. With the price of poi reaching up to \$8.99 - \$10.00 (Whole Foods store) per pound of poi in Hawaii, the farmers are only receiving 6% of that at \$.60 per pound. Many years back our farm had been approached by large firms that are willing to buy huge quantities of taro from us that would have left no taro for the poi market. Even though we could get a better price for our taro, we didn't want to leave our locals without poi.

This issue has divided farmers, families and communities within Hawaii, and many don't see the bigger picture, that other countries see Hawaii's taro shortages as an opportunity and that there's a market to import taro. In Australia, there's a Taro Growers Association

2

comprised of 50 farmers and increasing. There are considerations for the government to assist in funding for mechanization to increase production for the farmers. They also hold conferences and are looking at research to deal with the Samoan leaf blight and other diseases that may affect their industry. There's also taro from China that is supplying McDonald's taro pie and they probably would prefer to have Hawaiian taro for better marketing and public relations.

In my perspective, every farmer, whether big or small, full time or part time, works hard and I respect them for continuing this way of life. In doing so, this is the farmers' satisfaction, having the consumers enjoy our product. Statistics show the declining trend for taro farming in Hawaii and the taro farmers need help and are asking for help so that you will not say to us, "Why didn't you tell us?" And what will be the answer when the poi consumers ask, "Where's our poi, So let's support our Hawaii taro farmers so that there will be Hawaiian taro and poi in the future and not taro from Australia, China, Malaysia, Costa Rica, Puerto Rico and the largest exporter of taro at this time – Africa.

3

Chairman Gabbard & Members of the Committee:

SUPPORT BILL AS WRITTEN.

Tropical Hawaiian Products (THP) supports HB 1663 (HD1) prohibiting the development, testing, propagation, release, importation, planting, or growing of genetically modified only on Hawaiian Kalo in the State of Hawaii and urges your committee to support this "as is".

My name is Loren Mochida, General Manager of THP in Keaau, Hawaii. THP is a processor and exporter of Hawaiian Premium papayas to CONUS and Japan and represents over 50 papaya growers. I am also a Director on the Hawaii Papaya Industry Association (HPIA) Board.

Research and approvals of all biotechnology crops takes years to complete. This is done to ensure the integrity of the crop and insure that it is safe to the environment and consumers. Should a virus or disease devastate a crop in Hawaii, a resistant variety could be standing by to continue the production.

TROPICAL HAWAIIAN PRODUCTS

March 18, 2009 page 2

Common sense will show that stopping all research and testing of biotech crops can be injurious to those particular commodities. It would not be practical for research and testing to be done when devastation of a crop takes place. It is not a smart business decision.

Should research and test plantings show the positive results of the new variety, then growers will then have a choice whether to grow these GMO variety or not. Papaya Growers in the state have already chosen whether they want to produce by biotechnology, conventional, or organic. They have a choice.

We urge the committee to seriously consider this bill as written. We value and respect the spiritual and cultural significance of taro to Native Hawaiians. This bill addresses those concerns raised by the Native Hawaiian community.

Thank you for the opportunity to testify on HB 1663 (HD1).

From: Sent: To: Subject: Hancock, Kathy (KM) [KMHancock@dow.com] Wednesday, March 18, 2009 7:20 AM ENETestimony Senate hearing on HB1663 HD 1

Senator Gabbard and Senator English,

Please accept my testimony in support of the Taro Research Compromise Bill (HB 1663). It is imperative that we the people of the State of Hawaii do not turn our backs on any agricultural research possibilities. We must be thoughtful and diligent in our quest for knowledge and allow those with the expertise to use their knowledge and experience to better our lives through research. We would not summarily dismiss medical research that could save lives, why would we close the door on agricultural research that has the possibility to improve or save lives.

Respectfully,

Kathy Hancock

Mycogen Seeds 19 Hua'ai Road Hoolehua, HI 96729 808-567-6307 email: <u>KMHancock@dow.com</u>

HB1663 HD1: RELATING TO TARO SECURITY

DATE: March 19, 2009 TIME: 3:45pm PLACE: Conference Room 225

- TO: Committee on Energy and Environment Senator Mike Gabbard, Chair Senator J. Kalani English, Vice Chair
- FROM: Lisa Gibson President Hawaii Science & Technology Council

RE: HB1663 HD1 – Support for Compromises Offered

Aloha Chair, Vice Chair, and Members of the Committee,

The Hawaii Science & Technology Council is aware of the spiritual and cultural significance of taro in Hawaii and believes that the compromises offered in HB1663HD1 provide a foundation upon which constructive work on known threats to taro can be conducted. However, from previous testimony on this bill we understand that the most significant issues affecting taro in Hawaii, invasive species and diseases associated with imported taro and issues related to agriculture such as access to land, reduced numbers of farmers, water quality and loi health, are not being addressed by this legislation.

The Hawaii Science & Technology Council must reiterate that research is not the problem nor is it a threat to Hawaiian taro.

Nonetheless, the Hawaii Science & Technology Council supports the compromise language of HB1663HD1 that prohibits the genetic modification of any Hawaiian taro varieties and restricts genetic modification and testing of non-Hawaiian taro to enclosed laboratories where entry into such a laboratory is prohibited to the general public.

The Hawaii Science & Technology Council (HISciTech) is a 501(c)6 industry association with a 28-member board. HISciTech serves Hawaii companies engaged in ocean sciences, agricultural biotechnology, astronomy, defense aerospace, biotech/life sciences, information & communication technology, energy, environmental technologies, and creative media.

Thank you for the opportunity to testify.

Sincerely,

Lisa H. Gibson President

Ke Kula 'o Samuel M. Kamakau, LPCS

45-037 Kāne'ohe Bay Drive, Kāne'ohe, Hl, 96744 Tel: 808.235.9175 • Fax: 808.235.9173 • www.kamakau.com

E mālama 'ia ana ka mauli ola o kākou mai kēlā hanauna a i kēia hanauna. Our spirit of being is nurtured from generation to generation.

Testimony in SUPPORT of HB1663, and in OPPOSITION TO HB1226

March 4, 2009

Aloha kakou elected lawmakers,

Ke Kula O Samuel Manaiakalani Kamakau is a Hawaiian immersion charter school located in Kane'ohe Hawai'i. Our school focuses on educating our future leaders and community members with an emphasis on some key principles and Hawaiian values including: Malama 'Aina, Stewardship of the Land. Malama Kino, Health and Wellness. 'Ai Pono, Healthy Diet.

We the 'Uo Mamo, or Board of Directors comprised of representatives consisting of school faculty including school director, teachers, support staff, parents, students and community members of Ke Kula O S.M. Kamakau firmly request that you, the lawmakers elected to represent us, support legislation imposing a ban on Gentically Modified and Gentically Engineered taro of ALL varieties of taro (colocasia esculenta) in Hawaii, and oppose any legislation preempting genetic modification at any level in Hawai'i.

Our request is validated on several levels.

- 1. Genetically engineered taro has not been proven safe for our environment and cross contamination will pose unnecessary risks to our 'aina as well as to our native varieties of taro.
- 2. Gentically modified and engineered products have not been proven safe for human consumption and also poses a threat to the well known hypoallergenic properties of taro (see reference attached).
- 3. Genetic engineering of kalo or taro is disrespectful to Hawaiian values and beliefs.

As an educational organization that utilizes taro farming, preparation and consumption as key components of our curriculum, our concerns are great regarding this issue. As an educational program that has hopes to restore one of the largest know lo'i or wetland taro patches in the area of Ha'iku, our recognition as taro farmers and exponential amounts of future taro farmers are undeniable. The purity and integrity of taro is extremely valuable if not vital to the future of many of our lessons to be taught.

We SUPPORT legislation as indicated in HB1663 banning genetic modification of ALL taro valeties in Hawai'i, and OPPOSE legislation as indicated in HB1226 gmo preemption bill, for the same reasons listed above.

Mahalo Piha, Ke Kula O Samuel Manaiakalani Kamakau 'Uo Mamo

SEE ATTACHED REFERENCE

Dona, A. and I.S. Arvanitoyannis. 2009. Health Risks of Genetically Modified Foods. Critical Reviews in Food Science and Nutrition. 49:2,164-175

Health Risks of Genetically Modified Foods Dona, A. and I.S. Arvanitoyannis. 2009. Critical Reviews in Food Science and Nutrition. 49:2,164-175

Overview Need for testing Effects on animal growth Effect on gastrointenstinal tract Effects on the liver Effect on pancreas Effect on the blood Effects on the immune system Effect on biochemical parameters Mortality Developmental effect on fetus, babies Pleitropic and insertional effects (when genes influences multiple traits, thus one mutation such as from gmos can affect all traits) Gmo growth hormone in milk, effect on host animal Gmo growth hormone in milk, IGF effect on human health Pigs expressing human growth hormone GM pigs On antinutrients On potential transfer to the gut Allergic responses Bt expressed in many crops, farm workers exposed to

OVERVIEW

First, the authors challenge the concept of "substantial equivalence," which was used as a justification by the FDA to deregulate several key GM crops:"Substantial equivalence" may provide some theoretical points background in predicting toxicity, but in practice the only reliable way to evaluate the toxicity of a GM food is through toxicity tests on animals.

Furthermore, it has been argued that GM foods should be subjected to the same testing and approval procedures as medicines (i.e., clinical trials) since they must be adequate to ensure that any possibility of an adverse effect on human health from a GM food can be detected."On the premise that GM crops are safe because no evidence exists to the contrary this article indicates that:"In the absence of adequate safety studies, the lack of evidence that GM food is unsafe cannot be interpreted as proof that it is safe."

Also: "The results of most of the rather few studies conducted with GM foods indicate that they may cause hepatic, pancreatic, renal, and reproductive effects and may alter hematological, biochemical, and immunologic parameters the significance of which remains unknown. The above results indicate that many GM food have some common toxic effects. Therefore, further studies should be conducted in order to elucidate the mechanism dominating this action."

Also: "Small amounts of ingested DNA may not be broken down under digestive processes and there is a possibility that this DNA may either enter the bloodstream or be excreted, especially in individuals with abnormal digestion as a result of chronic gastrointestinal disease or with immunodeficiency"

Need for testing

"The toxicity tests should comply with the guidelines for toxicity testing of drugs. It should be emphasized that since these GM foods are going to be consumed by every human being they should be tested even more thoroughly than drugs and more experiments are required in order to study the possible toxicity and make any conclusions."

Also: "postmarketing surveillance should be part of the overall safety strategy for allergies, especially of high-risk groups such as infants and individuals in "atopic" families"

Effects on animal growth

Body weight might be significantly altered as it has been shown with the consumption of Mon863 corn (Seralini et al., 2007) and GM rice on rats (Li et al., 2004).

Effect on gastrointenstinal tract

Stomach erosion and necrosis were reported in rats fed with flavr-savr GM tomatoes, while GM potatoes expressing Galanthus nivalis (GNA) lectin induced proliferative growth in their stomach which is of particular importance if one takes into consideration that glomelular stomach erosions can lead to life-threatening hemorrhage, especially in the elderly and patients on nonsteroidal anti-inflammatory agents (Pusztai et al., 2003).

Intestines may also be affected by GM food consumption as it has already been shown with GM potatoes expressing Bt toxin which caused the disruption, multinucleation, swelling, and increased degradation of ileal surface cells in rats (Fares and El-Sayed, 1998), GM potatoes expressing gna which induced proliferative growth in the small-large intestines (Ewen and Pusztai, 1999a) and GM soybean type Roundup Ready_R which caused moderate inflammation in the distal intestine of salmons (Bakke-McKellep et al. 2007)."Also:"Binding to surface carbohydrates of the mouse jejunum was also revealed with Cry1Ac protoxin of the Cry genes, the most common terminators applied in currently approved crops (Vazquez-Padron et al., 2000).

According to Pusztai et al. (2003) since it is the genetic manipulation process itself which led to toxicity, similar hazards might be seen in animals or humans fed genetically-manipulated soya, canola, and corn over a long period of time (i.e., years or decades). The chronic inflammation and proliferative effect that may be caused by some GM plants on the gastrointestinal tract may lead after years to cancer.

Effects on the liver

As for the effects of GM food on liver there are only a few long-term studies. It has been found that GM soya can alter the cell structure and functioning of the liver in mice reversibly (Malatesta et al., 2002; 2003; 2005) and can cause changes in histomorphology (Ostaszewska et al., 2005) and the protein profile of the liver in rainbow trout (Martin et al., 2003).

Alterations have also been observed in hepatic enzymes after consumption of raw rice expressing GNA lectin (Poulsen et al., 2007), GM Bt with vegetative insecticidal protein gene (Peng et al., 2007) and in DuPont's subchronic feeding study in rats fed diets containing GM corn 1507 (MacKenzie et al., 2007). These alterations in hepatocyte cells and enzymes may be indicative of hepatocellular damage. Consumption of Mon863 corn in rats led to increase in trigycerides in females (Seralini et al., 2007).

Effect on pancreas

GM soybean has also an impact on pancreas, since changes occurred in pancreatic acinar cells

of mice and a high synthetic rate of zymogen granules containing low amounts of _-amylase (Malatesta et al., 2003)."Effect on kidneys"Another target organ of some GM crops is the kidney. Smaller kidneys were developed in DuPont's study in rats fed diets containing GM corn 1507 (MacKenzie et al., 2007), whereas consumption of Mon863 corn in rats led to lower urine phosphorus and sodium excretion in male rats. There were also small increases in focal inflammation and tubular degenerative changes characteristic of a classic chronic progressive nephropathy (Seralini et al., 2007). Rats fed GNA rice had elevated creatinine plasma concentration either due to some kind of renal effect or the increased water consumption in order to excrete the excess iron in the GNA rice diet (Poulsen et al., 2007).

Salmons fed GM soybean had higher head kidney lysozyme and higher acid phosphatase activities (Bakke-McKellep et al., 2007).

Effect on the blood

Response variables were observed in animals fed with GM crops. DuPont's study in rats fed diets containing GM corn 1507 showed a decrease in red blood cell count and hematocrit of females (MacKenzie et al., 2007) while GM corn Mon863 affected the development of blood with fewer immature red blood cells (reticulocytes) and changes in blood chemistry in rats (Seralini et al., 2007). Bt with VIP insecticidal protein gene caused a decrease in platelets, monocytes ratio in female rats, and an increase in the granulocytes ratio in male rats (Peng et al., 2007).

Effects on the immune system

As for the effects of GM crops on the immune system an increase in the production of Cry9Cspecific IgG and IgG1 in rats and mice fed with GM heat-treated corn CBH351 was observed (Teshima et al., 2002) because the Cry gene possesses immunogenic properties as it was shown by Vazquez-Padron et al. (1999). Serum IgG mediates the inhibition of serum-facilitated allergen presentation. The presence of enhanced IgG Abs activates the IgG response (van Neerven et al., 1999) thereby indicating the occurrence of an allergic reaction having occurred, although Germolec et al. (2003) suggest that antigen specific IgG does not correlate to clinical allergy. Moreover, GM corn Mon863 caused higher white blood cell levels in male rats (Seralini et al., 2007). DuPont's sub chronic feeding study in rats fed diets containing GM corn 1507 showed that eosinophils concentration in females was decreased (MacKenzie et al., 2007).

Rats given a diet based on GNA rice showed enlargement of the lymph nodes, and decreased weight of the mesenteric and of the female adrenal lymph nodes which may be indicative of an immune toxic response (Poulsen et al., 2007).

Effect on biochemical parameters

Subchronic feeding of GNA rice in rats resulted in decrease in glucose, while cholesterol, trigyceride, and HDLD concentration were higher (Poulsen et al., 2007).

Mortality

An increased mortality was observed in rats fed with GM tomatoes since seven out of forty rats died within two weeks without any explanation (Pusztai et al., 2003).

Developmental effect on fetus, babies

Food-ingested M13 DNA fed to pregnant mice, was detected in various organs of fetuses and newborn animals, suggesting a possible transfer through the transplacental route (Doerfler and Schubbert, 1998). Maternally ingested foreign DNA could be a potential mutagen for the developing fetus. Birthrates of piglets fed GM corn in Iowa country displayed an 80% fall due to high levels of Fusarium mold (Strieber, 2002), although it has been claimed that Bt corn expressing Cry proteins is less contaminated with mycotoxins (Weil, 2005). A Russian rat study reported very high death rates in the young of rats fed GM soya (56% died) in stunted growth in the surviving progeny (Ermakova, 2005). A study of GM rice expressing Xa21 on the development of rat embryos showed that there was an increase in the body weight gain of pregnant rats, the body weight, body length, and tail length of fetal rats (Li et al., 2004) whereas GM rice expressing cowpea trypsin inhibitor caused an increase in the male rats' body length and in the female rats' red blood cell number, hemoglobin, and monocyte number (Zhuo et al., 2004)."

Pleitropic and insertional effects (when genes influences multiple traits, thus one mutation such as from gmos can affect all traits):

"Concern has been expressed about the above potential effects which might cause the silencing of genes, changes in their level of expression or, potentially, the turning on of existing genes that were not previously being expressed (Conner and Jacobs, 1999). This interaction with the activity of the existing genes and biochemical pathways of plants, may lead to disruption of metabolism in unpredictable ways and to the development of new toxic compounds or an increase of the already existing ones as it happened with two genetically produced foods, tryptophan and g-linolenic acid (Hill et al., 1993; Sayanova et al., 1997).

Moreover, research into epigenetics has also revealed that genes account for only a part of the control of the biochemistry of organisms, and organisms have a level of control above genes that interact with genes explaining why genetic engineering is so unpredictable, with different results produced by each attempt and why the products are often unstable. The possibility that an unidentified compound may be present in the GM food makes crucial that each transgenic food as whole food and not as a single protein should be tested directly for toxicity in animals, although as Kuiper et al. (2004) state there are limitations in establishing dose-response relationships."

Gmo growth hormone in milk, effect on host animal

The use of rbGH in dairy cattle in order to increase milk yield has caused large controversy. Problems occurring such as an increase in mastitis may pose a risk to human health since the increased antibiotic use leads to antibiotic residues in milk (Epstein, 1996). Adverse effects in cows have been observed including lameness, mastitis, subclinical ketosis, an increase in embryonic loss and abortion, a decrease in final pregnancy rates, as well as a decrease in birth rate (Dohoo et al., 2003). It should be noted that lameness has also been reported in studies with transgenic pigs genetically engineered to carry human and bovine growth hormone genes (Pursel et al., 1989).

Gmo growth hormone in milk, IGF effect on human health

The consumption of milk from cows injected rbGH leads to an increase in IGF-I in humans, since IGF-1 survives digestion (Xian et al., 1995). The oral free IGF-1 feeding studies in rats sponsored by Monsanto and Elanco looked at by the Joint Expert Committee on Food Additives (JECFA) in 1992 had ambiguous results since neither used IGF-1 associated with its binding proteins, which are resistant to acidic conditions and may enable IGF-1 to survive digestion in the stomach. Moreover, IGF-1 is protected from digestion by the major milk protein casein (Hansen et al., 1997) and the milks buffering effect (Xian et al. 1995). Moreover, Monsanto's 90-day rat study which had previously shown that rbGH "is not orally active in rats" was re-examined and it was found that rbGH elicited a primary antigenic response meaning that rbGH was absorbed intact from the gut (Eppard et al., 1997). The full significance of human exposure to rbGH and IGF-1 is unknown, particularly in the neonate, the subpopulation at greatest risk (Morris, 1999). According to Chan (1998), at least some of the absorbed IGF-I can effectively stimulate the proliferation of cancer cells. The increased levels of IGF-I in humans predict increased rates in colon, breast, and prostate cancer, since they stimulate the indolent

slowly growing tumor cells that appear in an aging individual resulting in clinical cancer necessarily old. On the other hand, FDA states that this potential does not exist since any increase of IGF-I in milk is much lower than the physiological amount produced in the organism. These concerns about the consumption of milk from cows injected rbGH may be carried also to other animals such as pigs expressing human GH, pigs injected recombinant porcine somatotropin (rpST), and GH transgenic salmon.

Pigs expressing human growth hormone

Transgenic pigs expressing human GH showed dramatic effects in growth rates, feed conversion, and body composition, but exhibited serious side effects that were attributable to the high level of GH expression (Pursel et al., 1989). Repeated injections of rpST can also produce altered lipid composition similar to that of the GH transgenic pigs (Solomon et al., 1997).Growth hormone on fish However, when the fish growth hormone (GM) gene is introduced in salmon may GH circulation may elevate by 40-fold, leading to enlarged skulls and impair feeding and respiration (Dunham and Devlin, 1999). Experiments should be conducted in animals being fed GH transgenic salmon and other fish in order to examine whether the consumption of GH transgenic fish expressing high levels of GH will increase the levels of IGFI and lead to the same health risks as rbGH milk. It should be emphasized that as in milk there is a possibility that the presence of other proteins in the fish tissue may protect IGF-1 from digestion, which remains to be demonstrated in animal studies.

GM pigs

The experiment of Saeki et al. (2004) with pigs containing spinach desaturase gene which converts saturated fat into the unsaturated fat linoleic acid resulted in a high degree of mortality in founders and the F1 generation. Increased mortality might have been due to a random integration process where the transgene can insert in and damage any active gene locus (insertional mutagenesis) or to the significant alteration in the embryonic lipid profile caused by the transgene. The porcine embryo is unique in its high intracellular lipid content, which is associated with its sensitivity against freezing or in vitro production (Niemann and Rath, 2001). We strongly believe that the same toxicity could occur if the pregnant pigs were fed only the new source of glinolenic acid obtained from transgenic canola or of any future modified crop, since it alters the percentage of 18:2n–6 in liver (Palombo et al., 2000). We should be aware that any change in the lipidprofile of liver can also result in changes in metabolism with unexpected consequences.

On antinutrients

"The insertion of a new gene can sometimes lead to increase in existing levels of anti-nutrients, some of which cannot be reduced with heat treatment (Bakke-McKellep et al., 2007). One of the most widely available commercial GM products nowadays glyphosate-resistant Roundup Ready_R soybean may display an increase in anti-nutrients (Padgette et al., 1996). Heat-stable anti-nutrients such as phytoestrogens, glucinins, and phytic acid were also found to cause infertility problems in sheep and cattle (Liener, 1994), allergenic reactions and binding to phosphorus and zinc thereby making them unavailable to the animal respectively (Adams, 1995). An increase in the anti-nutrient level should not be accepted since a GM food may be consumed as raw material."

On potential transfer to the gut

"short DNA fragments of GM plants have been detected in white blood cells and in milk of cows and in chicken and mice tissues that had been fed GM corn and soybean, respectively (Beever and Kemp, 2000; Einspainer et al., 2001; Hohlweg and Doerfler, 2001; Phipps and Beever, 2001). Furthermore, fragments of recombinant cry1Ab gene were detected in the gastrointestinal tract of Bacillus thuringiensis (Bt)11 corn-fed pigs but not in the blood (Chowdhury et al., 2003). Therefore, it seems plausible that small amounts of ingested DNA are not broken down under physiological digestive processes. The fact that fragments of transgenic genes may not be detected in blood but can be detected in tissues of animals by PCR, underlies that they are in quite low levels in circulation and more sensitive methods of detection are needed (Puztai 2001).

Moreover, Murray and his coworkers (2007) showed that not all PCR assays can detect DNA in extractions of shortly cooked corn, making the interpretation of the results from PCR even more difficult. These limitations in the detection of GM DNA should make us reconsider the view that gene transfer cannot occur, which falls in agreement with the findings of Netherwood et al. (2004) that transgene from GM soya survived passage through the small bowel in human ileostomists. According to Flachowsky (2005) the uptake of GM DNA into cells of the gastrointestinal tract will normally have no biological consequences because the DNA will be degraded in the cell. The question is whether it can be degraded in patients with severe gastrointestinal diseases. In the unlikely event that the DNA is recombined into a host chromosome, the probability that it will exert any biological effect on that cell remains unknown."

Allergic responses

"The introduction of novel proteins into foods such as a GM soybean variety expressing methionine from Brazil nut (Nordlee et al., 1996) and GE corn variety modified to produce a Bt endotoxin, Cry9C (Bernstein et al., 2003) may elicit potentially harmful immunological responses, including allergic hypersensitivity (Conner et al., 2003; Taylor and Hefle, 2002).

Moreover, according to Prescott et al. (2005) the introduction of a gene expressing nonallergenic protein such as GM field pea, expressing alpha-amylase inhibitor-1, may not always result in a product without allergenicity. This study underlines the need to evaluate new GM crops on a case-to-case basis and to improve the screening requirements for GM plants. Brassica juncea, another GM plant, expressing choline oxidase gene caused low IgE response in mice and a cross-reactive epitope search showed a stretch similar to Hev b 6 having some antigenic properties although according to Singh et al. (2006) it had no allergenicity. These findings should be more carefully interpreted and repeated in other animal series in order to elucidate whether IgE response may play a role in toxicity.

As for Bt expressed in many crops, farm workers exposed to

Bt pesticide may develop skin sensitization and IgG antibodies to the Bt spore extraction (Bernstein et al., 2003)."Effects on animal growthBody weight might be significantly altered as it has been shown with the consumption of Mon863 corn (Seralini et al., 2007) and GM rice on rats (Li et al., 2004).

Dona, A. and I.S. Arvanitoyannis. 2009. Health Risks of Genetically Modified Foods. Critical Reviews in Food Science and Nutrition. 49:2,164-175

Bt Cotton: weaving a web of infertility

A recent survey conducted by Navdanya reveals shocking statistics of dramatic decreases in microorganisms and beneficial soil enzymes in the soil of Bt Cotton fields. The study comes amid controversial government attempts to commercially introduce Bt Brinjal into India, despite consistent opposition and growing evidence of the negative impact genetically modified organisms have on society, human health and the environment. Numerous studies have linked farmer suicides in India to Bt Cotton due to increased costs of agricultural inputs and falling market prices, resulting in insurmountable debts and desperation. Various other studies have found high rates of infertility in rats that are fed GMO products, animal deaths after grazing on GMO fields and butterfly deaths after feeding on Bt corn pollen. This study now provides damning evidence of the environmental degradation caused by Bt crops, as the crop literally kills organisms in the soil that make available the nutrients plants need to grow, a frightening trend that can lead to large scale desertification . Irregardless of these warning signs and significant opposition, European governments as well are trying to push through a GMO crops until there has been more studies conducted to confirm its safety to human health as well as the environment.

Navdanya's study was conducted in Bt cotton growing areas of Vidharbha, comparing the microbial biomass in the soil of Bt cotton fields with that of fields that grew other crops or other types of cotton. The survey found statistically significant drops in 2 microbes and 3 beneficial enzymes. These results are significant as it provides scientific evidence that Bt Cotton is making the soil infertile by decreasing microbial activity, and thus essentially killing the very soil that the crop is grown in. Additionally this proves that industrial agriculture creates a relentless cycle of despair as industrial agricultural products deteriorate soil fertility that then necessitates intensified fertilizer and agricultural application, which ultimately results in increased farmer's costs and soaring debts. It is interesting to note that the study was conducted in a region which has shown an alarmingly high rate of farmer suicides, a shocking 20,000 in the past 5 years. Finally, the fact that Bt cotton crops decreases microbial activity in the soil portends a future of sterile soil that may result in massive desertification and loss of arable land in the future in a time where food security is evermore essential.

The microbes with most significant drops are as follows Actinomycetes(17% decrease), Bacteria(14.2%), Dehydrogenase(10.3%) Acid Phosphatase(26.6%) and Nitrogenase(22.6%).

Actinomycetes play an important role in decomposition of organic materials, and thus provide a vital part in organic matter turnover and carbon cycles that replenish the supply of nutrients in the soil and is an important part of humus formation.

Bacteria are vital in recycling nutrients, contributing to many important steps in nutrient cycles, such as the fixation of nitrogen from the atmosphere and putrefaction.

Dehydrogenase enzymes play a significant role in the biological oxidation of soil and increase beneficial microbial activity.

Acid phosphatase enzymes are used by soil microorganisms to access organically bound phosphate nutrients, which make phosphates available to plants.

Nitrogenase is the enzyme used by some organisms to fix atmospheric nitrogenous gas. It is the only known family of enzymes which accomplishes this process.

An Affiliate of the Hawaii Farm Bureau Federation and the American Farm Bureau Federation

March 18, 2009

Committee on Energy & Environment

HB1663 HD1 to be heard on Thursday, March 19, 2009 at 3:45 p.m. in Room 225

Attn: Senators Mike Gabbard, Chairman and Kalani English, Vice Chairman

In regards to HB 1663 HD 1, (taro bill), the Molokai Farm Bureau would like to ask that you pass out the bill "as is." Because the Farm Bureau supports the needs of conventional, biotech and organic farmers, bills such as this just tend to divide the agricultural community; this compromise bill should ease some of the unwarranted tension.

We value and respect the spiritual and cultural significance of taro to native Hawaiians, many of whom live here on Molokai. This bill addresses those concerns raised by the Native Hawaiian community.

Taro has been decimated in many parts of the world, including Samoa, Puerto Rico, the Dominican Republic and the Solomon Islands, from diseases, pests, and global warming. This bill allows these countries to continue to seek out the expertise of Hawaii's researchers because they see the value in the tools of biotechnology to address the many agricultural challenges in their regions.

Activists have said: "Hopefully this moratorium will lead to not only a BAN on GMO taro, but ALL GMOs in Hawaii and elsewhere." HB 1663 HD 1 clarifies that this is **not** a referendum on biotechnology and should **not** be used to further the extreme anti-GMO agendas of a vocal minority by banning research on ALL varieties of taro.

For these reasons, we ask that you please honor the compromise offered in the House Draft.

Respectfully yours,

Donald G. Maum

President, Molokai Farm Bureau

From:	PERLAK, FREDERICK J [AG/2111] [frederick.j.perlak@monsanto.com]	
Sent:	Wednesday, March 18, 2009 4:04 PM	
To:	ENETestimony	
Subject:	Testimony on House Bill 1663, March 19, 3:45PM, Rm. 225, Committee on Energy and the Environment	

Dear Senator Gabbard and committee members,

Please pass HB 1663 as is. This bill respects the spiritual and cultural significance of taro to native Hawaiians. This bill address those concerns raised by the Native Hawaiian community. HB 1663 HD 1 clarifies that this is not a referendum on biotechnology and should not be used to ban research on all varieties of taro. Please honor the compromise offered in HB 1663. Thank you for your consideration.

Sincerely,

Fred Perlak Monsanto Company

This e-mail message may contain privileged and/or confidential information, and is intended to be received only by persons entitled to receive such information. If you have received this e-mail in error, please notify the sender immediately. Please delete it and all attachments from any servers, hard drives or any other media. Other use of this e-mail by you is strictly prohibited.

All e-mails and attachments sent and received are subject to monitoring, reading and archival by Monsanto, including its subsidiaries. The recipient of this e-mail is solely responsible for checking for the presence of "Viruses" or other "Malware". Monsanto, along with its subsidiaries, accepts no liability for any damage caused by any such code transmitted by or accompanying this e-mail or any attachment.

Kawaihapai Ohana c/o Thomas T Shirai Jr P O Box 601 Waialua, HI 96791 Email: <u>Kawaihapai@hawaii.rr.com</u>

Senate Committee on Energy & Environment (ENE) Senator Mike Gabbard(Chair) /Senator J Kalani English (Vice Chair) Notice of Hearing Thursday, February 19, 2009 3:45 PM / State Capitol Conference Room 225 March 18, 2009, 2009

RE: Testimony Supporting HB 1663 HD1 (Relating to Taro Security)

Aloha Chair Gabbard, Vice Chair English & Committee Members,

The Kawaihapai Ohana is a Recognized Native Hawaiian Organization (NHO) by the Department of Interior (<u>http://www.doi.gov</u>) and it's kuleana includes cultural and historical preservation applicable to Kawaihapai Ahupua'a. Some of the Kupuna of Kawaihapai were Taro (Kalo) mahiai (farmers) and were Cultural Informants for Bishop Museum who provided information about Waialua Moku:

The Hawaiian Planter by E. S. Craighill Handy (1940) -- Page 85 "Kaaimoku Kekulu (sic: Kaaemoku Kakulu), native of the district says that the name of spring and the terrace section noted above is Kaaiea."

Kawaihapai. "There is a sizable area of terraces in the lowlands (now surrounded by sugar cane), watered by Kawaihapai Stream. These terraces have evidently been lying fallow for some time, though several were being plowed for rice or taro in the summer of 1935. At the foot of the cliffs, watered by a stream the name of which was not learned, are several small terraces in which taro is grown by David Keaau (sic: David Keao)."

It's not needed to improve taro (kalo) thru Genetically Modified Organism (GMO) because our ancestors had a more traditional, effective and respectful way regarding this matter for many generations. Growing GMO Taro, has a direct affect upon an entire Ahupua'a System when the water from the lo'l goes in the kahawai (stream), muliwai (head water) and kahakai (ocean) affecting our seafood subsistence including all marine life. This has quietly and potentially affected Mokule'ia.

Verse 2 of the chant entitled Kalena Kai (<u>http://huapala.org/KAL/Kalena Kai.html</u>) composed by King Liholiho in 1820 which describes the agricultural productivity of *Mokule'ia* was not meant to be interpreted as *Genetically Modified Crops*:

Kalena Kai by King Liholiho (1820) – Verse 2 'O ka ehu' ehu o ke kai – The sea spray Ka moena pawehe o Mokule'ia – Geometric designs of the plains of Mokule'ia

Thank you for the opportunity to provide testimony supporting HB 1663 HD1 applicable to Hawaiian varieties of Taro (Kalo). Malama Haloa. Thomas T Shirai Jr – Kawaihapai Ohana (Po'o)

HCIA 2008-2009 Board of Directors

> President Adolph Helm

Vice President Fred Perlak

Treasurer John Anderson

> Secretary Alika Napier

Directors At Large Mike Austin Ray Foster David Gilliland Cindy Goldstein Laurie Goodwin Kirby Kester Paul Koehler Leslie Poland Martha Smith Mark Stoutemyer Jill Suga

> Past President Sarah Siyan

Executive Director Alicia Malualiti

Hawaii Crop Improvement Association

Growing the Future of Worldwide Agriculture in Hawaii

Testimony By: Alicia Maluafiti HB 1663hd1, Relating to Taro Security Sen ENE Committee Thursday, March 19, 2009 Room 225, 3:45 pm

Position: Oppose

Chair Gabbard, and Members of the Sen ENE Committee:

My name is Alicia Maluafiti, Executive Director of the Hawaii Crop Improvement Association. The Hawaii Crop Improvement Association (HCIA) is a nonprofit trade association representing the agricultural seed industry in Hawaii. Now the state's largest agricultural commodity, the seed industry contributes to the economic health and diversity of the islands by providing high quality jobs in rural communities, keeping important agricultural lands in agricultural use, and serving as responsible stewards of Hawaii's natural resources.

As stated in previous years, HCIA member companies do not grow taro nor do we have an interest in taro as a commercial research and development crop. We consistently affirm and respect the cultural meaning of Hawaiian taro and firmly believe that the Hawaiian community must lead the discussion of the future of Hawaiian taro, and Hawaiian taro research and education programs.

Legislating a moratorium on taro or any other agricultural crop grown in Hawaii sends a chilling message that Hawaii is not in support of science and technology. It undermines future investments and growth potential for responsible use of agricultural biotechnology as a 21st Century tool for farmers.

We stand firmly on the thousands of science-based and peer reviewed studies and 3,400 scientists around the world that attest to the safety of agricultural biotechnology. (The Safety of Agricultural Biotechnology study listing is available upon request) Plant research using this technology is not only safe but has the advantage of being more efficient. It requires significantly less time to produce new cultivars and is more precise than traditional plant breeding. As a result, varieties can be developed which are more productive and better adapted to local needs. It is an option or tool for plant breeding when other methods fail.

Thank you for the opportunity to present testimony.

91-1012 Kahi'uka Sireet 'Ewa Beach, Hi 96706 Tel: (808) 224-3648 director@hclaonline.com www.hclaonline.com

GMO TARO-A TARO FARMER'S PERSPECTIVE

Aloha, my name is Jim Cain, my family and I farm taro in Waipi'o Valley, island of Hawai'i. We also own and operate a family-run poi shop, King Laulau Brand Poi, where we process the taro we grow on our 6 acre farm, as well as taro we obtain from other farmers, providing poi for our Big Island community. I stand united with all the farmers of Waipi'o and strongly oppose the genetic modification of taro. My opposition to genetic engineering of taro is based on cultural, economic, and nutritional concerns.

The cultural concerns relating to the genetic manipulation of kalo cannot be overstated. Kalo's position as a high ranking family member in Hawaiian cosmology reflect deep rooted cultural values. These values, reinforced by kalo's role as a kinolau of Kane, show reverent respect for the natural world and kalo's ability to sustain and nourish people. These sacred family relationships can be traced back centuries to the very beginnings of Hawaiian culture, and every week when I deliver poi to my loyal customers, I am reminded of the importance of this ancestral food and its ability to nourish physically as well as spiritually. Genetic manipulation of Haloa shows utter disrespect for Hawaiian culture. In addition, recent attempts to patent and own taro hybrids derived from Hawaiian cultivars of taro are a cultural violation of these precious gifts that have been handed down to us generation to generation and are a direct link to our past.

Economically, genetic modification poses several risks to taro farmers and the poi industry. In recent years, there have been efforts to hybridize new varieties of taro in an attempt to produce disease resistance and increased yields. Cultivars of taro have been brought to Hawai'i from many places in the taro growing world to hybridize with Hawaiian varieties. After showing some initial promise, extensive testing by poi processors has shown that these hybrids produce inferior quality poi. Also, foreign cultivars of taro such as Palauan have been introduced into lo'i all around the state. While high-yielding, these varieties produce a low quality poi. Farmers have been left with no market for their crop, which takes over a year to produce, as poi millers universally reject these inferior taros. Subsequently, the availability of huli of the preferred Hawaiian varieties has been reduced. This has created both short-term and long-term economic hardships for taro farmers and poi processors and has contributed to the recent shortage of poi.

Of primary concern is the very real danger of contamination. A genetically engineered taro huli will look identical to the original Hawaiian variety from which it is derived. Once released into the lo'i, either controlled or by accident, recall will be impossible. Should problems arise, the effects of this contamination would be devastating to our industry. A history of contamination of other food crops world-wide by GE varieties has proven that containment, despite the reassurances of the bio-tech industry, is impossible.

Another economic concern of taro farmers is the issue of patenting of taro varieties. The traditional system of sharing huli between farmers is a proven way of ensuring the availability of planting material. The introduction of GE taro would seriously disrupt the ability of farmers to share huli and reduce the availability of suitable planting material. Recent attempts by the University of Hawai'i to patent and sell huli to farmers is seen as an unacceptable precedent to make money off those who can least afford it. The biotech industry is not here for community service, but is predicated on the goal of controlling the incredibly profitable seed supply.

Nutritionally, poi has a world-wide reputation as a pure and healthy complex carbohydrate. There are no known allergies to poi, it is a food that can be assimilated by anyone. As a poi maker, I am honored to provide this nutritious food to babies whose parents use our poi as the first food to nourish their children, to elders who have been eating poi all their life, and to a wide range of people in between. Also, poi plays such an important role in celebrating families' life events such as baby lu'aus, graduations, weddings and funerals. A lu'au is not complete without poi on the table. Genetic engineering of taro consists of imposing genes from other plants such as rice and wheat into taro's DNA. The resulting changes could have untold effects on the hypo-allergenic qualities of taro and poi. When researchers are asked if they can guarantee the safety of their work, they honestly answer no. The dangers posed to the nutritional quality of this ancestral staff of life are completely unacceptable.

From my perspective as a Waipi'o taro farmer and poi processor, the disagreement over this issue is really a clash of values. University researchers value and are concerned about their perceived right to academic freedom. The bio-tech industry values and is concerned about their perceived right to unregulated free-market economics. Waipi'o, where I come from, is a very traditional Hawaiian valley. The still intact protocols and values that have been handed down are based on the value of Kuleana—rights that are based in the concept of responsibility. While moving forward, it is important to remember our connection to the past. That is why, in Waipi'o, the titles that garner the most respect are not Dr. or Professor, but begin with Auntie or Uncle or Tutu. It is important to note that the UH researcher responsible for the GE research on taro has never even been to Waipi'o Valley. Technology is seen as a tool not as a guiding principle. Science can be a wonderful tool for advancement, but science without a conscience, without the guidance of the precautionary principle, can wreak havoc. There must be a balance. In other words, Go easy. Be respectful.

In these troubled times of global warming, resource depletion, and world-wide unrest, the buzz word in Hawai'i has become sustainability. Reducing our dependence on offisland petro-chemical control, and becoming self-sufficient in food production are of huge concern. The proven methods of producing taro and poi can be seen as a model for the future of sustainable agriculture in Hawai'i. Producing taro with little or no outside resources, and providing food for our local population is a practice that has a track record that is centuries old in Hawai'i and stretches back many thousands of years in the history of mankind. It is vitally important that we support farmers who are feeding our local population.

The decline of taro production can be seen as a mirror duplicating the problems of self-sufficient food production in Hawai'i. The problems are rooted in availability of land and water and re-elevating the job of farmer to a viable occupation and way of life. Claims made by the bio-tech industry of impending devastating diseases are seen as scare tactics. Any good farmer knows that the key to crop health is soil fertility and it is in this direction we should be focusing our policies and research efforts. These are not new concepts, but lessons handed down to us from our kupuna. We just need to listen.

There is nothing wrong with our Hawaiian taros. They were developed over centuries by some of the most respected farmers the world has ever known. The sad decline in the number of varieties of taro that was grown by our ancestors has nothing to do with disease, but lies in the fact that, over the last century, people have moved off the land and instead of growing their food, are now buying all their food. In the interest of Hawai'i's long term security we need to reverse this practice.

Support for the passage of HB 1663 and SB709 that calls for a ban on the genetic engineering of taro in Hawai'i has swelled as people have become educated about this issue. The Hawaiian community, the taro farming community, and the poi eating community will continue to be passionately vocal in their efforts to protect Haloa. This will not go away because this is ohana. Precedence for the careful regulation of biotechnology has been established at every level of government world-wide, and it is important that the decision makers in Hawai'i educate themselves about the risks associated with this potentially dangerous technology.

In conclusion, I advise people that the best way to identify a taro farmer is to look at their feet. No can help, us taro farmers have ugly feet, it's an occupational hazard. So when someone claims to be speaking in the interest of the taro farmers, look at their feet. Look at who they represent. Please support our local farmers. Please malama Haloa.

Jim Cain, Waipi'o Valley 775-9001 kinglaulau@hotmail.com <u>Testimony</u>: For HB 1663 H.D. 1 (prohibition against genetically modified Hawaiian taro)

<u>Committee</u>: The Senate Committee on Energy and Environment Senator Mike Gabbard, Chair Senator J. Kalani English, Vice-Chair

Hearing: March 19, 2009 at 3:45 p.m., Conference room 225

<u>Name</u>: My name is Dr. Susan C. Miyasaka. I am an Agronomist and Interim County Administrator, College of Tropical Agriculture & Human Resources, University of Hawaii – Manoa, but I am testifying today as a private citizen. I was the lead scientist in a now-completed research project to genetically engineer Chinese taro Bun long for improved disease resistance. I was born and raised in Hawaii. I grew up eating laulau and poi, and I respect all the diverse cultures found in Hawaii.

Reasons to vote for HB 1663 H.D. 1:

1. <u>Research to improve disease resistance of taro using all available technologies is</u> needed:

House Bill 1663 H.D. 1 will allow laboratory-based research of non-Hawaiian taro using all available technologies to improve disease resistance. My research team has found that insertion of an oxalate oxidase gene from wheat into Chinese taro variety Bun long resulted in genetically engineered (GE) lines that completely stopped the spread of Taro Leaf Blight under laboratory conditions (see attached report). These are very promising results and House Bill 1663 H.D. 1 will allow continued testing of these promising transgenic lines in the laboratory in Hawaii and field-testing in other states or territories.

New pests and diseases enter Hawaii all the time. It may just be a matter of time before the Alomae-Bobone viral complex found in the Solomon Islands reaches Hawaii. Hawaiian taro varieties were tested in the Solomon Islands and all were killed by this viral complex. The insect vector required to transmit this viral complex is found in Hawaii. Imagine what it would do to our taro production if it reaches Hawaii. It would be foolish to throw away any potential tools that could help to sustain taro production in Hawaii. Laboratory-based research into genetic engineering of non-Hawaiian taro will allow scientists to develop tools that could be used in the future to help save taro production in Hawaii similar to the way that genetic engineering of papaya ringspotresistant varieties helped to save the papaya industry in Hawaii.

2. Genetic engineering research is a separate issue from commercialization:

Recently, genetic engineering was used in rice to confirm that a rice gene conferred tolerance to prolonged submergence. This gene was transferred into a susceptible rice variety and it was found that tolerance to submergence increased. Then, the scientists used conventional breeding and marker-assisted selection to increase submergence tolerance of commercial rice varieties. My research team now knows that an oxalate oxidase gene can confer increased tolerance to Taro Leaf Blight. Based on this research, we can look for similar genes found naturally within the taro gene pool and improve disease resistance using conventional breeding and marker-assisted selection. If a total ban on genetic engineering of all taro varieties is passed, then we will not be able to pursue such research to identify important disease resistance genes that occurs naturally within the taro gene pool.

3. <u>There is little risk that traditional Hawaiian taro varieties will lose their genetic purity</u> due to <u>GE Chinese taro</u>.

Traditional Hawaiian taro varieties are grown by vegetative propagation ('hulis'). They are not grown from seed. It would be easy to maintain traditional taro varieties without a high risk of accidental transfer of disease-resistance genes from GE Chinese taro.

In order for transgenes to move from GE Chinese taro to Hawaiian taro varieties, Chinese taro Bun long would need to flower and produce healthy pollen (rare event in Hawaii), then the pollen would need to move via wind or insects to a female flower in a Hawaiian taro variety, then seed capable of growing into whole plants would need to develop (rare event – I have read or heard of only 3 incidences in 70 years in Hawaii). These two rare events would need to happen simultaneously with plants in close proximity, resulting in a risk that is almost nil. In order to produce conventional crosses of taro, breeders must hand-pollinate Hawaiian taro varieties to produce seed capable of growing into whole plants.

4. <u>There is little risk of food safety problems or increased allergic reactions *if* GE Chinese taro is commercialized.</u>

The federal government requires extensive testing that would identify and eliminate problems prior to commercialization. I am not an expert in food safety of GE crops; I defer to the experts. "It is the position of the American Dietetic Association that agricultural and food biotechnology techniques can enhance the quality, safety, nutritional value, and variety of food available for human consumption and increase the efficiency of food production, food processing, food distribution, and environmental and waste management. The American Dietetic Association encourages the government, food manufacturers, food commodity groups, and qualified food and nutrition experts to work together to inform consumers about this new technology and encourage the availability of these products in the marketplace."

Based on scientific evidence, I believe that it is possible to have a win-win situation here. Allow pro-active research on non-Hawaiian taro varieties using all available technologies to ensure the sustainability of taro production in Hawaii. Respect Hawaiian cultural concerns by placing a ban on genetic engineering of Hawaiian taro varieties (but not all taro varieties). Please pass HB 1663 H.D. 1 as written and do not amend it to place a ban on genetic engineering of all taro varieties.

Update on Genetic Engineering of Chinese Taro (variety Bun long) for Increased Disease Resistance Susan C. Miyasaka Dec. 14, 2006

Why utilize genetic engineering (GE) of taro to increase disease resistance?

Conventional breeding of taro is being conducted at the University of Hawaii, and new hybrids have been developed with increased resistance to *Phytophthora* leaf blight. However, under weather conditions suitable for this disease organism, this resistance can break down. The taro variety shown above with leaf blight is one of the new hybrids conventionally bred for greater disease resistance.

Genetic engineering offers the possibility of increased disease resistance beyond the level found within the taro germplasm. And, the taro variety remains the same genetically except for the few new genes engineered into it.

The greatest success of genetic engineering of crops for increased disease resistance has been to improve viral disease resistance in plant species without any known natural resistance. For example, genetic engineering of papaya for resistance to *Papaya ringspot virus* has helped to save the papaya industry in Hawaii.

The Alomae-Bobone viral complex is found in the Solomon Islands today, where it has wiped out 96% of the native taro varieties there and decreased taro production by 95%. Hawaiian taro varieties were tested in the Solomon Islands and all were found to be susceptible to this virus complex¹. The insect vector required to transmit this virus complex is found in Hawaii. Imagine if that virus reaches Hawaii - what would it do to our taro production?

Alomae, a lethal viral disease of taro, is spread by taro planthoppers.

¹ S. Pacific Commission., 1978, Advisory Leaflet.

In the Solomon Islands, "it is by no means certain that the crop [taro] can be reinstated to its former abundance and usage. Its day may have gone forever, as has happened in many parts of coastal Melanesia."² Could this viral disease decimate taro production in Hawaii in the future?

Is the movement of genes across species unnatural?

No. Conventional breeding of plants and animals have moved genes across species for specific purposes, such as increased hardiness. For example, mules are the offspring of a female horse and a male donkey. And triticale is a hybrid of wheat and rye. In addition, all organisms, including humans, carry genes inserted from different species. For example, all humans carry genes that have been incorporated from viral infections.

The bacterium *Agrobacterium tumefasciens* transfers its DNA (genetic material) into woody or herbaceous plants and causes crown gall disease. In our project, we are utilizing this naturally occurring bacterium to transfer disease resistance genes into Chinese taro.

What is the progress of our project on genetic engineering of Chinese taro to increase disease resistance?

Three disease resistance genes have been transferred into Chinese taro variety Bun long:

- 1. Oxalate oxidase gene from wheat;
- 2. Chitinase gene from rice; and
- 3. Stilbene synthase gene from grapevine.

Each disease-resistance gene was transferred separately into callus (undifferentiated tissue) of variety Bun long in tissue-culture. Then, we manipulated plant hormones to produce shoots and then whole plants from the callus.

Taro calli (undifferentiated tissue)

Taro plantlets in tissue-culture

² Kastom Gaden Association, Solomon Islands, 2005., People on the Edge, www.terracircle.org.au.

Do these disease resistance genes help Chinese taro resist pathogens? Yes, in preliminary tests using small, tissue-cultured plants.

Untransformed Chinese taro (NT) infected with *Phytophthora colocasiae* at 12 days after inoculation. Note plant is almost dead. Chinese taro transformed with oxalate oxidase gene (g5) shows complete arrest of *Phytophthora colocasiae* without any diseased lesions spreading to the leaves.

Chinese taro transformed with an oxalate oxidase gene completely arrested the spread of the pathogen *Phytophthora colocasiae* which is the organism responsible for leaf blight. In comparison, untransformed Chinese taro was almost dead at 12 days after inoculation with the pathogen. Other preliminary tests showed that Chinese taro transformed with an oxalate oxidase gene or a chitinase gene slowed the spread of the fungal pathogen *Sclerotium rolfsii* but the disease eventually killed the plants.

How do the products of these disease resistance genes work?

Oxalate oxidase catalyzes the breakdown of oxalate to produce hydrogen peroxide which inhibits growth of pathogens. Remember the hydrogen peroxide your mother used to cleanse your skinned knees?

Chitin is a hard, semitransparent material that's found in the cell walls of some fungi and molds. Chitinases degrade the chitin found in the cell wall of fungal pathogens, causing the fungi to die.

Stilbene synthase catalyzes the production of resveratrol, a compound that is found naturally in grapes and peanuts. Resveratrol stops the growth of fungal pathogens.

Could these disease-resistance genes accidentally move from GE Chinese taro?

Not likely. First, Chinese taro variety Bun long rarely flowers under the environmental conditions of Hawaii. Second, traditional Hawaiian taro varieties rarely

produce viable seed in Hawaii without human intervention. Taro breeders must manually move the pollen from one taro flower to another flower when its female part is ready because the insect that naturally pollinates taro flowers is not found here. Also, since taro is vegetatively propagated, it would be easy to maintain traditional taro varieties without a high risk of accidental transfer of disease-resistance genes from GE Chinese taro.

How might these disease-resistance genes affect the nutrition of taro?

The health risk of GE food is so low that after more than 10 years of experience, GE crops have been grown on more than a billion acres and been consumed by millions of humans without a single negative health issue³. The federal government requires intensive testing of genetically engineered crops for possible health and environmental hazards prior to approval.

The official position of the American Dietetic Association is that "Agricultural and food biotechnology can enhance the quality, safety, nutritional value, and variety of food available for human consumption and increase the efficiency of food production, food processing, and food distribution, and environmental and waste management"⁴. Did you know that if you eat cheese made in the United States, almost certainly you are eating the product of a genetically modified organism?

The anti-microbial compounds produced in GE Bun long should have little negative effect on its nutrition. For example, oxalate oxidase possibly might improve the digestibility of taro, because it breaks down oxalate, a known anti-nutritive compound that contributes to the 'itchiness' of taro. Chitinases should have little effect on humans when consumed, because chitins are found in true fungi and insects but not in plants or mammals. Resveratrol is found in the skin of red grapes and it might *improve* the nutrition of GE Chinese taro due to its anti-cancer, anti-viral, and anti-inflammatory effects. Of course, prior to any potential commercialization of GE Chinese taro, federal government regulations require intensive food safety tests.

What are the plans for GE Chinese taro when this project terminates?

The early results for increased disease resistance of GE Chinese taro appear promising, but much more research is needed. Obviously, researchers cannot state that GE Chinese taro is more disease resistant without testing plants in the greenhouse and ultimately in the field. In addition, the federal government would require tests of GE Chinese taro for food safety and environmental concerns prior to commercialization.

This federally funded project on genetic engineering of Chinese taro for increased hardiness will run out of funds in early 2007. As a result of the current controversy about genetic engineering and taro, it isn't likely that future funding will be available without support from the taro industry and/or consumers in Hawaii. Without further funding, the GE Chinese taro lines either must be discarded or sent to other cooperators in the world who are willing to conduct further tests. We will lose the opportunity in Hawaii to test these promising lines for increased disease resistance.

³ International Service for the Acquisition of Agri-Biotech Applications, 2006, Brief No. 34-2005.

⁴ Journal of the American Dietetic Association, Feb. 2006, p. 285-293.

This brief summary presents the scientific facts about potential benefits such as increased hardiness of GE Chinese taro and an evaluation of possible risks. You, as taro consumers, need to weigh the possible risks against potential benefits of GE Chinese taro. Ask yourselves what risks are acceptable to ensure that taro is here for future generations to enjoy?

Personal Testimony Presented Before the Senate Committee on Energy and Environment Thursday, March 19, 2009 at 3:35 p.m. by Andrew G. Hashimoto

HB 1663, HD1 - RELATING TO TARO SECURITY

Chair Gabbard, Vice Chair English, and Members of the Committee:

My name is Andrew Hashimoto, and I serve as Dean and Director of the College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa. I am pleased to provide personal testimony on HB 1663, HD1. This testimony does not represent the position of the University of Hawaii or CTAHR.

HB 1663, HD1 prohibits the development, testing, propagation, release, importation, planting, or growing of genetically modified Hawaiian taro in the State of Hawaii, and prohibits non-Hawaiian taro from being genetically modified outside an enclosed laboratory, or inside an enclosed structure unless entry is prohibited to the general public. The bill now imposes a penalty of a petty misdemeanor for violations.

I support this measure as amended, as CTAHR will continue to abide by an agreement made in May 2005 that we would not conduct any transgenic research on Hawaiian taro because of its cultural significance.

The safeguards specified in the bill of prohibiting entry into enclosed laboratories or enclosed structures where genetic modification of non-Hawaiian taro is conducted are acceptable conditions.

Other communities in the Pacific Basin have been negatively impacted by the effects disease and other threats to non-Hawaiian taro and have sought our assistance. CTAHR works closely with land grant colleges on Guam, the Northern Marianas, American Samoa and Micronesia through the Agricultural Development in the Pacific project. A moratorium from conducting research on non-Hawaiian taro would be a great disserve to our clients and to our obligations as a land grant university.

Thank you for the opportunity to testify on this bill.

Personal Testimony Presented Before the Senate Committee on Energy and Environment Thursday, March 19, 2009 at 3:35 p.m. by Ching Yuan Hu

HB 1663, HD1 - RELATING TO TARO SECURITY

Chair Gabbard, Vice Chair English, and Members of the Committee:

My name is Ching Yuan Hu, and I serve as Associate Dean and Associate Director for Research of the College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa. I am pleased to provide personal testimony on HB 1663, HD1. This testimony does not represent the position of the University of Hawaii or CTAHR.

HB 1663, HD1 prohibits the development, testing, propagation, release, importation, planting, or growing of genetically modified Hawaiian taro in the State of Hawaii, and prohibits non-Hawaiian taro from being genetically modified outside an enclosed laboratory, or inside an enclosed structure unless entry is prohibited to the general public. The bill now imposes a penalty of a petty misdemeanor for violations.

I support this measure as amended, as CTAHR will continue to abide by an agreement made in May 2005 that we would not conduct any transgenic research on Hawaiian taro because of its cultural significance.

The safeguards specified in the bill of prohibiting entry into enclosed laboratories or enclosed structures where genetic modification of non-Hawaiian taro is conducted are acceptable conditions.

Other communities in the Pacific Basin have been negatively impacted by the effects disease and other threats to non-Hawaiian taro and have sought our assistance. CTAHR works closely with land grant colleges on Guam, the Northern Marianas, American Samoa and Micronesia through the Agricultural Development in the Pacific project. A moratorium from conducting research on non-Hawaiian taro would be a great disserve to our clients and to our obligations as a land grant university.

Thank you for the opportunity to testify on this bill.

Personal Testimony Presented to the House Committee on Energy and Environment Thursday, March 19, 2009 by Wayne Nishijima

HB1663 HD1 - RELATING TO TARO SECURITY

Chair Gabbard, Vice Chair English, and Members of the Committee:

My name is Wayne Nishijima, and I serve as Associate Dean and Associate Director for Cooperative Extension of the University of Hawai'i at Mānoa, College of Tropical Agriculture and Human Resources (CTAHR). I am pleased to provide personal testimony on HB1663 HD1. This testimony does not represent the position of the University of Hawai'i or CTAHR.

HB1663 HD1 protects the cultural integrity of kalo, the genetic biodiversity and integrity of Hawaiian taro varieties in the State, and establishes a ban on developing, testing, propagating, releasing, importing, planting, and growing of genetically modified Hawaiian taro in the State of Hawaii.

I support this current version of the bill as it prohibits the development, testing, propagation, releasing, importation, planting or growing of genetically modified Hawaiian taro in the State of Hawaii. It also prohibits the genetic modification of non-Hawaiian taro outside of an enclosed laboratory and that such a facility is prohibited entry by the general public.

There are other places in the Pacific Region that are concerned with the effects disease and other threats to non-Hawaiian taro. We would like to continue to provide aid to and research on these non-Hawaiian taro varieties. To be prevented from using the best research technologies for taro would be a great disserve to our clients and to our obligations as a land grant university, and may eventually affect the future availability of taro. Unfortunately, research is usually not considered important until a potentially devastating problem is experienced first hand.

Thank you for the opportunity to testify on this bill.

From:mailinglist@capitol.hawaii.govSent:Wednesday, March 18, 2009 8:43 AMTo:ENETestimonyCc:tiffanygd@yahoo.comSubject:Testimony for HB1663 on 3/19/2009 3:45:00 PM

Testimony for ENE 3/19/2009 3:45:00 PM HB1663

Conference room: 225 Testifier position: support Testifier will be present: No Submitted by: G. Douglas Tiffany, PhD. Organization: Individual Address: 4125 Pai St. Kalaheo, HI 96741 Phone: 808-652-8727 E-mail: <u>tiffanygd@yahoo.com</u> Submitted on: 3/18/2009

Comments: Chair Gabbard and Vice Chair Enhlish:

I value and respect the spiritual and cultural significance of taro to native Hawaiians. This bill very adequately addresses those concerns raised by the Native Hawaiian community.

We have seen the decimation of taro in Samoa, Puerto Rico, the Dominican Republic and the Solomon Islands from diseases, pests, and the effects of climate change. This bill allows these countries to continue to seek out the expertise of Hawaii's Research Community because they see the value in the tools of biotechnology to address the many agricultural challenges in their smaller and less well funded communities.

Activists have said: "Hopefully this moratorium will lead to not only a BAN on GMO taro, but ALL GMOs in Hawaii and elsewhere." HB 1663 HD 1 clarifies that this is not a referendum on biotechnology and should not be used to further the extreme anti-GMO agendas of a vocal minority by banning research on ALL varieties of taro.

Senators, we must take a reasoned and balanced approach to this issue and recognize the potential global implications. If Hawaii is to take a global leadership position in technology, our hands must not be tied by idealolgies based on fear and bad science. Please honor the compromise offered in the House Draft and pass out the bill " as is".

PROTECTING

NATIVE HAWAIIAN

CUSTOMARY &

TRADITIONAL RIGHTS

AND OUR FRAGILE

ENVIRONMENT

Office 1149 Bethel Street, Ste. 415 Honolulu, HI 96813

Mailing Address P.O. Box 37368 Honolulu, HI 96837

toll-free phone/fax 888.528.6288

www.KAHEA.org kahea-alliance@hawaii.rr.com

KAHEA: the Hawaiian-Environmental Alliance is a non-profit 501(c)3 working to protect the unique natural and cultural resources of the Hawaiian islands. KAHEA translates to english as "the call."

H.B. 1663 HD1- In Support, with amendments Senate Committee on Energy and Environment March 19, 2009, 3:45 pm, Rm. 225

Aloha mai kakou- Chair Gabbard, Vice-Chair English and Committee Members,

We respectfully submit 8 volumes of testimony collected over the past month, from taro farmers and consumers across Hawaii nei, all in support of a ban on all GMO-taro. We also submit 9 published articles to substantiate the statements made below.

We ask you to please consider these important points:

Please AMEND the bill to protect ALL taro in Hawaii, by banning ALL GMO-taro in Hawaii.

Taro is a very resilient plant that can grow, spread, flower, seed and get all mixed up in the taro patch, in the wild, and even in the lab. Even a tiny left over piece of root can grow into a full size plant. ALL GMO-taro in Hawaii would put farmers and consumers at risk of contamination as it would be inherently uncontrollable. Chinese taro, or Bun Long, is a very popularly consumed taro that is prized for lu'au leaf and taro chips, and is grown on most if not all taro farms in Hawaii. Cross-contamination of natural Bun Long by the look-alike GMO-taro of this highly consumed and farmed variety of taro, raises enormous liability concerns for farmers and producers of taro-products. It is easy to release an experiment, but impossible to control. There is no liability held, but everything is at stake.

The broader public's concerns about GMO-taro are in fact, real

Numerous scientific studies point to very serious health and allergy problems with GMOs, and lack of proper scientific protocols or tests of released GMOs. The biosafety dangers are real and present in this GMO experimentation and the cultural implications are already inflicting true pain in our community. There is simply no proof nor potential that such technology will be truly beneficial to consumers and to taro farming. Beyond just a business investment this issue is paramount to our community livelihood and environmental health, and for that we continue to advocate for democractic representation in the legislature, and notification and informed consent about these biosafety issues in our communities.

SEE ATTACHED:

- "Catholic Healthcare West GMO Press Release 1.09"
- "Health Risks of Genetically Modified Foods, KAMAKAU Testimony 2009"
- "GMO Cotton Effect on Soil Biological Activities 2009"

While a small number of commercial growers and poi companies oppose this ban, consumers overwhelmingly reject the idea of GMO-taro and poi.

Poi consumers take the safety and quality of poi very seriously! Poi consumers are also overwhelmingly local families with strong cultural ties to taro.

Allowing GMO-taro also severely threatens our ability to expand the value-added market for organic and uniquely hypo-allergenic taro products, as GMO-taro could never be guaranteed to be allergy-free and could cause allergic reactions. GMO-taro can never be certified organic. This is why GMO-taro contamination and related allergy concerns cause such great alarm to other taro businesses, as well as consumers. SEE ATTACHED:

- "Soil Association- GMOs- American Consumer Report 10.08"

There are now well over 8,000 individuals and local organizations that have been supporting the intention of this legislation since 2007.

Community support for this initiative only continues to grow, uniting consumers and farmers. SEE ATTACHED:

- 8 volumes of testimony collected over the past month, over a thousand letters in support of a ban on all GMO-taro.

- Public testimony of over 7,000 in support from 2008 can be found online at:

http://www.capitol.hawaii.gov/session2008/lists/getstatus.asp?

query=SB958&showtestimony=on&currpage=1

There are ways to engage in ethical science without genetically modifying a new organism.

The state recognized the importance of addressing these issues and projects by establishing the Taro Purity and Security Task Force in 2008.

Farmers and scientists must exercise due diligence in researching and developing all other options before resorting to such an extreme as creating a new organism. For example, eradication of the apple snail (another business venture gone wrong) would increase taro production by at least 25%. Assisting industrial farmers in transitioning to multi-cropping and organic fallowing techniques would also drastically increase yields. Establishing the scientific basis to explain the high yields of taro in Hawaii before industrialized farming, such as potential of kukui tree composting for fungus control.

A comparative analysis of existing taro farming techniques is needed before introducing new organisms to the Hawaiian ecosystem and new risks to the taro market.

SEE ATTACHED:

- "Comparison of GMO Cotton and Organic Farming 2.09"

There exist many safe methods of advancing taro farming- without GMOs.

Following the taro blight that wiped out Samoan taro production in the early 1990s, in-depth studies found that such blights can be prevented by multi-cropping of taro varieties and improved farming techniques such as fallowing, wider row spacing, more careful huli selection, etc. In addition, organic methods produce remarkable increases in yields and nutritional value per acre, reflecting a true abundance of efficiency, biodiversity and advancement of soil science-- especially compared to the declines often experienced in industrialized mono-cropped fields that are treated with chemicals and are not fallowed. SEE ATTACHED:

- "Taro Industry Back on its Feet- Samoa Observer 12.08"

- "Bibliography of Taro Leaf Blight"
- "TaroGen Publications"

There are other technologically advanced ways to create new taro plants without putting public safety at risk.

For example, one cutting edge technology is called Marker Assisted Selection, which speeds up the plant breeding process- "MAS makes it possible to select traits with greater accuracy and to develop a new variety quicker than in the past."

SEE ATTACHED ARTICLE: - "FAO study on Marker-Assisted Selection 7.07"

In this GMO debate it is certainly crucial to recognize that there do exist safer and more advanced emergency options for plant breeding. *However*, it is just as crucial to heed local taro industry concerns about introducing new varieties into Hawaii. Taro farmers across Hawaii do not now find this MAS technology necessary as there exists in Hawaii already a vast wealth of genetically diverse taro varieties. The introduction of new hybrids is not only unnecessary and costly but also a threat to the preservation and propagation of the existing native taro biodiversity. Additionally, due to taste and texture complaints recently introduced hybrid taros have already been rejected for poi production by local poi mills-- at great cost to the farmers who had been convinced by researchers to plant those new hybrids and who then had to replant their farms with the traditional Hawaiian taros.

The FAO article explains also that the MAS hybrid technology should only be used "where there is a clear advantage over traditional selection techniques." In this case, the value of the technology is superficial and short term compared to the many unique and invaluable native heritage taros of Hawaii- the fortified and proven results of 1,200 years of traditional selection techniques- fine tuned to the many climates and conditions in Hawaii and to poi production. It with this native biodiversity and improved farming techniques that we can protect our farms from blights.

Please, Senators, if you aren't absolutely and proof positive that GMO-taro is better for Hawaii than natural taro and safely advanced farming techniques then please don't allow this experimentation to continue. If you do encounter any substantial scientific and economic proof that GMO-taro will actually provide a safe and secure benefit to Hawaii please make such information publicly available for review and discussion. Otherwise, please support the original intentions of HB1663 to protect all varieties of taro in Hawaii, by amending HB1663HD1 back to its original language.

Thank you for considering all this testimony, it comes from the heart and soul of Hawaii.

Me ka mahalo piha,

Bryna Rose Storch

Community Coordinator KAHEA: The Hawaiian-Environmental Alliance

Comparison of BT Cotton and Organic Farming in Vidharbha

K. Jalees

NAVDANYA

Steptember 2008, New Delhi

1. Introduction:

Vidarbha in Maharashtra consists of the following 11 districts.

Sr. No.	Districts
1	Yavatmal
2	Amravati
3	Washim
4	Buldhana
5	Akola
6	Wardha
7	Nagpur
8	Bhandara
9	Chandrapur
10	Gadchiroli
11	Gondia

Whereas a large number of farmers in Punjab or Western Uttar Pradesh also have additional sources of livelihood other than agriculture. But farmers in Vidarbha entirely depend on agriculture and that too rainfed agriculture. Some of them have mulching animals but productivity is very low.

"I have no other method of earning a living. I only know to make a living from land" says Mr. Punjab Rao from Village Jamwadi inYavatmal District. He has 18 acres of land and grows Cotton, Jowar and Soyabean.

2. <u>BT Cotton in Vidarbha</u>

In Maharashtra, almost fifty percent cotton is grown in Vidarbha mainly in Yavatmal, Wardha, Amravati, Akola, Buldhana, Washim and Nagpur. In this region agriculture is largely rainfed. Cotton area in Vidarbha during 2002-03 and 2008-09 is given in Table 1. Because of massive publicity and the misleading propaganda by the seed companies, the cultivation of BT Cotton in Maharashtra has gone very rapidly, in last three years. Presently Vidarbha is growing nearly 20% BT Cotton of the country.

Year	Area in Hectares (00)
2002-2003	14256
2003-2004	13885
2004-2005	130499
2005-2006	12805
2006-2007	13755
2007-2008	13722
2008-2009	12244

Table	1
-------	---

According to seed dealers, "Presently BT Cotton in Vidarbha covers 95-97 percent of cotton area. Though we also keep Non-BT seeds but there is no demand."

But BT Cotton failed to bring smiles on the faces of the farmers. According to Rajendra Shirbhate of Mangrul Village in Amravati, "Farmers never had good times but since the introduction of BT Cotton, situation has gone from bad to worse. Low cotton price also played havoc."

"Earlier cotton was known as a white gold because we could buy one *tola* of gold in one quintal of cotton. But now more than 5 quintal of cotton is needed to buy the same amount of gold i.e. one *tola* of gold." recalls a group of elderly farmers in Mangrool village.

As shown by Table 2, baring a few, almost all the farmers either incurred the loss or just recovered the cost of cultivation, resulting in debt trap which ultimately leads to suicide. According to Table 2, the average cost of cultivation is Rs. 8164 per acre, while the average Gross income is Rs. 8876 per acre and

~

the net average income is just Rs. 714 per acre. For Farmers of Benora in Washim, the cultivation of BT Cotton has become like '*Matka*' (a kind of lottery), in which you never know the outcome. "During last 5 years the cost of cultivation oif cotton has escalated approximately three times, however the price of cotton has increased just by 20-25%", says Satish Ingolre of Vithole Village in Washim. According to Ingole, the price of cotton should be above Rs. 3000 per quintal.

But there are exceptions too, for instance Arun Sakhaskar of Satephal Village. He has 14 acres of land, out of which on 10 acres he grows BT Cotton. He has two children one son and one daughter with total family size of six. He seems to be happy with BT Cotton. His entire village is growing BT Cotton with inter cropping of tur. Like Arun, Pramod Kale of Bhidi on Wardha is growing BT Cotton on 8 acres of land. Though he is not satisfied with the yield but he does not complain. He has two sons, both of them are in Nagpur, doing Engineering courses. To meet the expenses of his sons, he has also undertaken some job. He says, "Not to talk of any government Job, even a peon in private company is 100 times better than a farmer, I do not want that my children should live a farmer's life."

3. <u>Cultivation of Organic Cotton:</u>

Farmers group in the suicide hit Vidarbha argue that the economies of cotton farming have been thrown out of gear. Cotton growing farmers in Vidarbha are living on negative returns. By bringing down cost of cultivation through scientific organic farming and by getting premium on the certified organic produce like cotton, cereals, and pulses, it is possible to come out of the present debt trap.

National Commission for Farmers had proposed that the government declare Vidarbha as an organic farming zone. Farmers with bigger lend holding can manage the costs and risks. For small and marginal farmers with rain fed cultivation, it makes economic sense to switch to organic. Navdanya in collaboration with Vidarbha Organic Farmers Association (VOFA) is promoting organic crop across several villages. "By Organic Cultivation, we do not get much yield of cotton, however we do not have the risk of being indebted and ultimately committing suicides" says Abhay Thakre of Palasgaon in Wardha. Another farmer 'Moreshwar' of Madni in Yavatmal says, "organic cotton attacks less pests. When there is attack of sucking pest we spray the mixture of cowdung and urine. Besides, organic cotton needs less irrigation, only 2-3 times, where as BT Cotton needs 8-9 times irrigation". According to Rambhau, a farmer of Zapatkhed, "There is zero cost of pesticide and Fertilizer". He got inspiration from Shrikant, an associate of Navdanya.

While the average price for BT Cotton was Rs. 2000/- per quintal, organic cotton fetches much higher price, Rs. 3100 per quintal. According to Table 3 the average cost of cultivating of organic cotton is Rs. 3788, the average gross income per acre is Rs. 10075, and the net income per acre is Rs. 6287 per acre.

4. Cost Benefit Analysis of BT Cotton and Organic Cotton

According to Table 2 and Table 3, the Cost Benefit of BT Cotton and Organic Cotton in one acre in Vidarbha is given below:

		BT Cotton (Rs. / acre)	Organic Cotton (Rs. / acre)
A.	Expenses; seeds; pesticides; fertilizer; irrigation; etc.	8164	3788
В.	Output Value	8876	10075
C.	Net Income (B–A)	714	6287

The above comparison clearly shows that value of input in BT Cotton is more than two times than organic. The income in BT Cotton is just Rs. 714 per acre where as it is Rs. 6287 in organic cotton which is about nine times higher.

5. <u>Costs of Pesticides for BT Cotton:</u>

As estimated by Table 2, the average cost of pesticide for BT Cotton is Rs. 1813 per acre or about Rs. 4605 per hectare (1813×2.54)

Table 4 gives the approximate value of pesticide spray on cotton in Vidarbha between 2006 and 2008.

Year	Value of Pesticides (Rs. Crores)
2006	633.41
2007	631.89
2008	563.83

Table 4

Pesticide costs of BT Cotton in Vidarbha

In 2007, the area of BT Cotton in Maharashtra and the country was about 2.88 and 6.2 million hectares respectively which shows that Maharashtra on BT Cotton consumed pesticides worth of Rs. 1326 crores, where as for the country the figure comes out to be Rs. 2855 crores.

6. Loss of Conventional Seeds:

During last one decade seed companies had evolved comprehensive strategy to promote their seeds by falsifying and dramatizing the yield of their seeds. This was repeatedly enforced by the representatives of the seed companies, farmers seminars and above all seeds dealers, which also acts as moneylenders. Farmers were guaranteed large returns.

Even after crop failure in the very first year, for the next year farmers were lured by assuring less spray of pesticides and higher yield. Thus, slowly and systematically farmers were trapped in the vicious circle of BT Cotton.

According to Mr. Sudhir of Lingi Village in Yavatmal, "Earlier entire village used to grow only *Desi / Conventional* cotton, but today there is hardly any farmer sowing "*Desi Seeds*". Due to continuous neglect all "*Desi Seeds*" of cotton have vanished". Seed dealers do not store these seeds because nobody buy and moreover there is no profit. "Why should I sell such seeds when there is no buyer and the profit is minimal" says Nitin Sarode a seed dealer in Yavatmal.

"Previously Maharashtra Seed Corporation used to sell conventional seeds at the rate of Rs. 50 kg. Then government brought hybrid seed" says Mr. H.S. Dhinkar of Talni in Yavatmal. The following varities of conventional seeds were popular.

	081
	1007
	468
and	Laxmi

The yield of conventional cotton was about 2 quintal per acre. To increase the yield government brought Hybrid seeds of cotton. To promote hybrid cotton, government gave intensive to farmers. The common hybrid varieties were

> AKH – 4 AKH – 3 AKH – 5

AKH – 8

"The AKH-4 was most common. But Hybrids seeds required a lot of spray to control pests. Then BT Cotton was introduced and these hybrids seeds were replaced by BT Cotton. Thus the government policy destroyed the conventional seeds" comments Mr. Dhinkar. But surprisingly government officials have no idea, how the conventional seeds were lost and they do not seem to be interested to revive these seeds.

7. Change in Cropping Pattern and Shift to Soyabean in Vidarbha:

During 2002 and 2008 Vidarbha has witnessed a significant change in cropping pattern. In Amravati division, the main agricultural area of Vidarbha and consisting of Yavatmal, Buldhana, Washim, Akola and Amravati Districts, the area of '*Jowar*' the main food crop declined from 504900 hectares in 2002 to 296000 hectares in 2008; a decline of about 42%. Similarly, during the same period the area of '*Moong*' also declined from 341300 hectares to 242000 hectares, a decline of 30%. The area of cotton almost remained constant between 2002 and 2007, though it was reduced in 2008 (Table 5).

According to Shankar Gulane and Laxman Shelkar of Mangrul Village in Amravati now only 10-12% land is used for *Jowar*, mainly as a fodder for cattle. "The yield of *Jowar* is very low, so no one seems to be interested in *Jowar*" says Purshottam of Singri Village.

As shown by Table 5, soyabean has recorded a major shift from just 434100 hectares in 2002 to 1097000 hectares in 2008 i.e. 2.5 times increase in just 6 years. This year alone there was shift of nearly 20%. This shift has come at the expense of *Jowar*, *Moong*, cotton and other crops.

"This is because soyabean costs much less to grow than cotton and needs less pesticide and fertilizer than cotton. Besides, it takes less time than cotton. It is sown in May-June and gets ready by November, which means you may grow wheat or other '*Rabi*' crop if you have irrigation. This is not the case with cotton" says Sanjay Garde of Village Girda in Washim.

According to K.B. Herde of Injhori, "Soyabean costs about Rs. 4000 per acre and the yield is 7-8 quintal. The usual market rate for soyabean is Rs. 1500 – 1800 per quintal. This gives you safe income of about 8000 per acre which is not the case with BT Cotton".

But this year there was a shortage of soyabean seeds and there was a demand for the subsidized cheaper seed. Some farmer's cites one reason for the shortages of seeds of soyabean. According to these farmers, "dealers backing cotton in a region where BT Cotton now reigns supreme feared that the ongoing shift to Soyabean would rob them of their huge profit which they earn by selling BT Cotton seeds and pesticides. There is no benefit for them in the shift to soyabean. Hence these dealers created the shortage of soyabean seeds".

Unfortunately an unprecedented pest attack caused irreparable damage to standing crops of soyabean in Vidarbha affecting over millions of farmers. It had been identified as leaf eating caterpillar known in local parlence as military worm or "Lashkari Kira".

8. False Propaganda by BT Seed Companies

To promote the sale of their seeds, companies resort to false and misleading propaganda. For instance, Chintamani a seed dealer in Kalamb displace two advertisements of Ankur BT. Both these advertisements exaggerates the yield of Ankur BT. Personal discussion with Ramesh Bhau Mahtre, the person whose name was given in the advertisement reveals that he has the demonstration plot for Ankur and the yield is lower than the claim in the advertisement (See Box).

> Deepak Rao Village and P.O. Watkhed, Tehsil Ralegaon, Variety – Ankur Jai BT Area – 1 Acre Date of sowing – 15 June 2007 Distance of sowing – 4×2

 Ramesh Bhau Mehtre Village and P.O. Kalamb,
Variety – Ankur Akka BT Area – 1 Acre Date of sowing – 22 June 2007 Distance of sowing – 3×3 Yield – 12 quintal / acre

9. BT Cotton Seed Companies, Brands & Rates

	Seed Companies	Brands
1	Nuzeveedu	Malika 207 Bunny
2	Ankur	Ankur 651 Akka Jai
3	Rasi	Rasi 2
4	Mahyco	Kanak Bombino Neena
5	Krishidhan	Maruti 9632 Super Maruti 441
6	Paras	Atal
7	Vikram	Vikram - 5 Vikram - 9

8	Tulsi	Tulsi - 4 Tulsi - 1 Tulsi - 101
9	Amreshvara	Chhatrapati Om - 3 Amar - 333
10	Vibha	Dyna Cash Grace
11	Palmur	Abhay Madhura
12	Ajit	Ajit - 155 Ajit - 11 Ajit - 33
13	Pravardhan	Pravardhan - 31 Rudra
14	ЈК	JK CH - 99 JK CH - 666 JK CH - 206
15	Kaveri	Encounter
16	Daftari	Daftari - 9
17	Nath	Vishvanath

18 Arya

- 19 Shakti
- 20 Maharani
- 21 Gabbar
- 22 Krishna
- 23 Hanuman
- 24 Gayatri
- 25 Shivaji
- 26 Hero
- 27 Sigma
- 28 Rakhi
- 29 Mathura
- 30 Jambo
- 31 Amodh

Rates

 Nuziveedu, Ankur, Paras, Krishidhan, Mahyco, Rasi, sale two types of BT Cotton Bollgard-I & Bollgard-II, their rates are Rs. 650 & Rs.750 respectively for a bag of 450 grams. The rates of other varieties are Rs. 650 for a bag of 450 grams.

10. Common Pests and Pesticide

BT Cotton is mainly attacted by following pest Jassids Aphids Thrips Boll Worm Mealy Bug Military worm

Following Pesticides are used to control above pests Confidore Thyrodron Assitop Acetamiprid Syphermithane Monochrotophos Tracer Metacid Pride Avant Admire Ecalux Luseed Endosulphan Novacron Luphos Tata Mida Roger

11. Farmers Suicides in Vidarbha

According to National Crime Records Bureau (NCRB) more than 1.5 lakh farmers committed suicide during 1997-2005. Maharashtra alone accounts for nearly 30,000 suicides, largely concentrated in Vidarbha region.

As many as 1211 distressed farmers committed suicide in 2007 in Vidarbha, the cotton belt of Maharashtra. Among the 11 districts in Vidharbha region, Yavatmal accounted for maximum suicides at (332) followed by Amravati (210). Other districts to cross the 100 marks were Washim (162), Buldhana (142), Akola (114) and Wardha (110). Most of the suicides occurred in the main districts growing BT Cotton.

The remaining five districts which were not included in the Prime Minister's package recorded lower number of deaths. Nagpur registered (42), Bhandara (32), Chandrapur (35), Gadchiroli (18) and Gondia (14).

Sr. No.	Districts	Suicides
1	Yavatmal	332
2	Amravati	210
3	Washim	162
4	Buldhana	142
5	Akola	114
6	Wardha	110
7	Nagpur	42
8	Bhandara	32
9	Chandrapur	35
10	Gadchiroli	18
11	Gondia	14
	Total	2011

Table 6

Finance Minister is his budget proposal 2008-2009 had announced a loan waiver of Rs. 60,000 crores which was subsequently increased to Rs. 71,000 crores. However, the farmers in Vidarbha failed to gain as the average land holding here is above the stipulated limit of 2 hectares. In districts like Yavatmal, which had recorded highest number of farmers suicides, almost 54 percent of farmers are not eligible for waiver.

Besides, the package money did not reach the local banks till mid of September. To distribute the loan during *"Kharif"* seasons co-operative banks and local banks had to borrow from NABARD and other sources. It is therefore, should not come as a surprise that even after the announcement of debt waiver
farmers suicides continues unabated. Since then, a large number of farmers have committed suicide. Some of them are listed below.

Name	Village	District
Durgadas Desa Pawar	Bori Hazara	Yavatmal
Jyoti Tambke	Cheejgaon	Yavatmal
Kisan Rahate	Pimplakuti	Yavatmal
Ramesh Bhagwan	Nimkhed	Amravati
Vithal Namdeo	Amala	Amravati
Wankhede		
Hanumant	Jalgaon	Amravati
Sanjay Thakre	Sunderjapa	Amravati
Narendra Thataram	Khapthanda	Nagpur
Santosh Ramchandra	Umrata	Nagpur
Umble		
Kisan Udke	Kadki	Nagpur
Amar Singh Solanke	Donawada	Akola
Subhash Kisan Taside	Gajipur Takli	Akola
Naresh Gharpade	Chitanwadi	Akola
Ramesh Ambhore	Khanapur	Akola
Kolu Phunde	Bapevada	Bhandara
Datuji Choudhary	Nara	Wardha
Bhagwant Phuljule	Wani	Wardha
Keshav Shelke	Arvi	Wardha
Vasudev Bhangare	Giroli Heti	Gondia
Jagnath Satya	Kanhala	Gondia
Kashinath Wagmare	Mondala	Buldhana
Ramdas Maske	Pandaraeo	Buldhana

Due to repeated cotton failure and indebtedness, Vidarbha faces a new problem and this is a disturbing trend. Farmers are finding it difficult to get their children married off. Rambhau of Zapetkhed who has three daughters comments, "In a suicide ridden Vidarbha, girls avoid marriage with poor farmers for fear that they may commit suicide. They also do not want their fathers to take more loans". His views are shared by Shankar of Kolambi in Yavatmal. Incidentally Shankar has three sisters-in-law (sisters of wife).

12. Main Conclusions:

- 1. BT Cotton has replaced more than 95% conventional and hybrid cotton.
- 2. Average cost of BT Cotton cultivation is about Rs. 8164/- per acre and the profit is only Rs. 714 per acre.
- 3. The average cost of organic cotton cultivation is Rs. 3788/- per acre and the net profit is Rs. 6287 per acre.
- In case of the organic cotton the cost of pesticides and fertilizer is cipher.
 For BT Cotton these two inputs costs about Rs. 3400 per acre.
- 5. Nearly 91% farmers growing BT Cotton are indebted whereas only 4% farmers cultivating organic cotton are indebted.
- 6. Due to government policies all the 'Desi/Conventional seeds are lost, and now no traders keep them'.
- 7. During last 7 years, Vidarbha has witnessed significant change in cropping pattern. In Amravati division, the main agricultural area of Vidarbha, the area of *Jowar*, the main food crop has declined from 504900 hectares in 2002 and 296000 in 2008. (a 42% decline). Similarly during the same period, the area of *'Moong'* declined from 341300 hectares to 24200 hectares (a decline of 30%). The area of cotton

remained constant between 2002-07. However, in 2008 it also registered a decline over previous year from 1150400 hectares to 1019500 hectare a 20% decline).

But soyabean recorded a spectacular growth from just 434100 hectares to 1097000 hectares during 2002 and 2008. It recorded nearly 20% increase over last year.

- During last five years the cost of cultivation increased almost three times (300% increase) but the price of cotton did not increase proportionately. The price of cotton increased only23% from Rs. 1700/- to Rs. 2100/- per quintal
- 9. To control the larger segment of the BT Cotton seed market, companies have flooded the Vidarbha. The major companies have several brands, of BT seeds. Though there are more than 30 companies, however, Nuziveedu, Ankur and Rasi are commonly used by farmers. Surprisingly Mahyacol BT seeds are not preferred by the farmers, as it failed to give better results.
- The relief package announced by the Finance Minister did not benefit the farmers as till mid of September, the package failed to reach local banks. To distribute the loan during '*Kharif*' season, cooperative banks and local banks had to borrow from NABARD and other sources.

Appendix

Year	Mahar	Maharashtra India		lia
	Area under BT Cotton (Million Hectares)	Cost of Pesticide (Rs. Crores)	Area under BT Cotton (Million Hectares)	Cost of Pesticide (Rs. Crores)
2004	0.200	92.10	0.500	230.25
2005	0.607	273.45	1.300	598.65
2006	1.840	847.32	3.800	1749.90
2007	2.880	1326.24	6.200	2855.1

Area under BT Cotton an	l cost of Pesticide in	. Maharashtra and India
-------------------------	------------------------	-------------------------

Cost of Pesticide of BT Cotton in Maharashtra during 2004-2007

Cost of Pesticide of BT Cotton in India during 2004-2007

.

Land of the GM-Free?

How the American public are starting to turn against GM food

Land of the GM-Free?

Executive summary

Despite the fact that 87 per cent of Americans believe that their food should carry a label telling them whether Genetically Modified (GM) products have been used in it or not, almost none do. As a result GM food has been sold widely and for many years in the USA – without consumers being aware of what they are buying. The powerful pro-GM lobby in the USA has used this as evidence that the public accept, or are at least neutral, on the issue of GM food. But given a choice, over 50 per cent of Americans say they would not eat GM.

The GM industry has managed to keep US consumers in the dark about the food they are eating for more than a decade, through lobbying the US Food and Drug Administration (FDA) and state governments to ensure that foods do not legally have to be labelled as GM. But some major new developments in the US market suggest that the tide may finally be turning against the GM lobby. This briefing is not intended to be comprehensive, but it highlights some significant developments that are being ignored in the current UK debate about GM.

In 1994 Monsanto produced a genetically engineered bovine growth hormone (rBGH) that is injected into dairy cows to increase the yield of milk. This GM hormone has faced criticism internationally since its launch on the grounds of both human health risks and animal welfare concerns. While the EU and Canada rejected it, it was deemed safe by the US Food and Drug Administration and the World Trade Organisation (WTO), and has been used widely in the US dairy industry, without any labelling of the milk as 'GM-produced'. Monsanto worked very hard to ensure that consumers have no way to make a choice – getting some US states to ban dairies from selling their milk with 'no artificial growth hormone' labels. But increasing consumer awareness of rBGH in the US has caused sales of the milk to plummet. Between 2002 and 2007 use of the hormone fell by 23% and the proportion of US cows being injected with rBGH fell from 25% to below 17%.

Understanding their customers wishes, many major retailers, processors and producers have recently moved to ban rBGH from their products, with Walmart, Safeway, Starbucks, Kraft and many more ensuring that their customers can buy GMO free dairy products for themselves and their families. Opposition to the use of this hormone has grown so much that Monsanto announced last

month that they would be selling off the failing product.

As well as this growing consumer rejection of GM food in America, GM companies have had to face opposition by US farmers and regulatory authorities to a series of new

GM products. Both GM rice and GM wheat faced such strong opposition from farmers that they never made it out of field trials, and have never been grown commercially in the USA. Hardly any GM sweet corn¹ for human consumption is grown either (as opposed to maize grown for animal feed), for the simple reason that it tastes so bad that consumers won't buy it.

Attempts to launch GM alfalfa, America's fourth most widely grown crop, have also fallen flat. Farmers took legal action against the release of the crop and won. In 2007 the USDA was ordered to withdraw its approval of the GM alfalfa, a ban was placed on all planting of the crop and the sale of GM alfalfa seeds has now been prohibited throughout the USA. There is also evidence that US plant breeders are rejecting GM technology in favour of more reliable and effective methods such as marker assisted selection. Despite soya being one of the most widely grown GM crops, the newest high-yielding soya strains are non-GM.

For the first time in the USA, a major labelling initiative is underway that will finally provide consumers with the option of choosing a wide range of non-GM foods. The biggest companies in the natural and organic industry have united to develop a non-GMO label scheme that offers consumers the choice they clearly wish for, backed up by a robust verification system to ensure that it is a claim they can trust. This new 'Non-GMO Project' will be launched next year. It is led by a group of companies with combined annual sales of at least \$12 billion – equivalent to almost 10% of the entire UK food and drink industry. Around four hundred companies across the US and Canada have pledged their support, and at the outset around 28,000 different products are likely to be covered by the scheme.

With US consumers, farmers and politicians losing their enthusiasm for GM crops, it is not surprising that the GM industry has scaled up its efforts to find a new market in the EU. But in Europe, over 175 regions and over 4,500 municipalities and local areas have declared themselves GMO-free. Major countries that once supported GM, like France and Germany, no longer do so, and the Republic of Ireland, Northern Ireland, Scotland and Wales are all committed to GM-free policies. It is just the strongly pro-GM English Government that looks increasingly out of touch with what consumers really want.

¹ This report uses English terminology for crop names. We use 'maize' not 'corn' (for the crop used as animal feed), and 'sweet corn' for the maize people eat. 'Oilseed rape' is used instead of the North American 'canola'. Note that 'alfalfa' is also called 'lucerne' in the UK.

Monsanto's GM bovine growth hormone

What is it and what does it do?

In 1994 Monsanto released a new GM product onto the market: recombinant Bovine Growth Hormone (rBGH), trade name Posilac (also known as rBST). It is an artificial, genetically modified version of bovine somatotropin, a hormone produced in the pituitary gland of cattle that stimulates growth in young cattle and lactation in adult cows. When the GM protein is injected into dairy cows (they have to be repeatedly injected every two weeks), it has the effect of increasing milk production by 7-15%.

Health

The use of rBGH has been controversial primarily due to its negative effects on animal health and concern has also been expressed by scientists over its potential effects on human health.

Meta-analyses of the scientific evidence published by the Canadian Veterinary Medical Association and the EU Scientific Committee for Animal Health and Animal Welfare have concluded that the use of rBGH causes 'substantially and very significantly poorer welfare in cows'. Their findings indicated that cattle receiving rBGH injections suffer from:

- 50% increased incidence of lameness
- 25% increased incidence of mastitis, a painful infection of the udder
- 18% increased incidence of infertility, an indicator of overall poor health
- infection at the site of injection, with lesions exacerbated by repeat injections
- substantial increase in multiple births which can lead to welfare problems

As well as these serious negative impacts on the welfare of cows, there are risks to human and animal health:

 the routine use of antibiotics to combat the elevated levels of disease in cows contributes to the development of resistant disease strains and thus reducing the available drugs for both human and animal use

- veterinary drugs found in milk
- elevated levels of pus in the milk from infected udders

Scientists have raised the possibility of several other human health risks resulting from consumption of milk produced with rBGH. While there does not appear to be a higher level of bovine growth hormone in milk from treated cows, levels of insulin-like growth factor 1 (IGF-1) are significantly elevated to at least 5 times the

normal level. This substance is identical in both cattle and humans, and increased levels of IGF-1 in humans have been linked to cancer of the prostate, breast and colon. Indeed, an inquiry by the UK Veterinary Products Committee in 1999 stated that the likely increase of IFG-1 in the gut lumen following consumption of rBGH treated milk raised concerns about enhanced cell proliferation of the gut mucosa and therefore increased risk of cancer of the colon.

Regulation

The drug was approved for full distribution in the United States in 1993 by the US Food and Drug Administration (FDA), on the basis of one 90 day study on 30 rats that had been carried out by Monsanto.

Regulators in the EU and Canada were not convinced. Health Canada (the Canadian equivalent of the US FDA) stated that the results of Monsanto's rat trial showed cause for concern, and, following a detailed safety review, made the decision to ban the use of rBGH on the basis of unacceptable risks to animal health. EU regulators also refused approval for the drug, and launched an in-depth scientific study on the risks of using artificial hormones in farm animals. Their research led to a ban on rBGH use in the EU in 1989, made permanent in 2000, and the additional decision to ban imports of hormone-treated beef, which effectively blocked the majority of imports of beef from North America. In 1996 the USA complained to the World Trade Organisation, which eventually ruled in its favour, stating that the EU had not provided enough significant proof of danger. In contrast to its position on GM crops, the EU stated that it was the product's safety that should be conclusively proven, not its risks. The EU stood firm on its health concerns, and rather than allow synthetic hormones into the European food supply, it endured US trade sanctions amounting to 116.8 million USD per year on such items as Roquefort cheese and Dijon mustard. These sanctions are still in effect today.

Currently, rBGH is not approved for use in Japan, New Zealand, Australia, Canada or the European Union.

Use in US – widespread and unlabelled but not without controversy

Despite the international controversy, Monsanto's GM hormone was launched in 1994 in the US, and by 2002, around a quarter of cows in the country were being treated with rBGH.

The FDA stated that since the recombinant, or genetically engineered form of BGH looks virtually identical to a cow's natural somatotropin, there is no significant difference between milk from treated and untreated cows. The FDA also concluded that it did not have the authority to require special labelling for milk and dairy products from rBGH-treated cows. While permitting dairies to label milk as 'from cows not treated with rBGH/artificial growth hormone', they stated that producers have no basis for claiming that milk from cows not treated with rBGH is safer than milk from rBGH-treated cows.

FDA states No significant difference in milk from cows treated with artificial growth hormone. Despite these assurances, the American public were not as easily pacified as Monsanto might have hoped. Consumer groups were active in raising awareness of the risks of rBGH and while hormone-treated dairy products had become the norm in supermarkets and the food service sector, increasing numbers of smaller dairies chose to advertise their non-use of rBGH to their customers. Monsanto went on the offensive and sued a number of these dairies, alleging that they were illegally suggesting that non-rBGH milk was superior. In several cases, dairies were forced to add text to their labels echoing the FDA's statement of rBGH's safety.

This didn't fool the American public. The campaign against rBGH continued, scientists and doctors spoke out in the media about their concerns, and at their annual conference in June 2008 the American Nurses Association voted to work to "eliminate the use of rBGH in the US by appealing to those who make purchasing decisions within the institutions where we work".

Since Monsanto introduced rBGH to the dairy industry in 1994, demand for milk produced without synthetic hormones has increased by 500%. Many consumers switched to organic milk as, in the absence of reliable information, it was the only label they trust enough to give to their children. Between 2002 and 2007 use of the hormone fell by 23% and the proportion of US cows being injected with rBGH fell below 17%.

Desperate measures

Last year, Monsanto appealed to the FDA to block all labelling that refers to production without rBGH, and to the Federal Trade Commission to block any advertising of milk that mentioned non-use of the synthetic hormone. Both bodies dismissed Monsanto's complaint, stating that they would only intervene where fraudulent claims were made.

Since Monsanto failed to get federal support to impose a blanket ban on references to rBGH-free production, it started to campaign to restrict labelling information on a state-by-state basis. With the backing of a few of the most intensive dairy farming companies, Monsanto have been exerting pressure on state governments but have faced strong opposition from consumer groups and farmers.

In both Ohio and Utah laws are being considered that would ban 'rBGH-free' labels as 'misleading' on the basis that this couldn't be verified by a simple compositional test of the milk. Utah are proposing to ban all statements about production methods, while in Ohio any mention of rBGH on a label would have to be accompanied by the statement "FDA says no significant difference has been shown between milk derived from rBST-supplemented and non-rBST supplemented cows" in a specified font, size and package location. Both the International Dairy Foods Association and the Organic Trade Association are currently pursuing legal challenges against this.

Another attempt to limit consumer information was made in Pennsylvania last year. The Secretary of Agriculture proposed a law in October 2007 that banned non-rBGH labelling. Following an outcry by consumers and the dairy industry, this was overturned by the Governor in January 2008.

Monsanto have tried to push similar labelling restrictions through in Indiana, Missouri, Kansas, Vermont and New Jersey, but in each case the ban has so far failed to make it through the state legislature.

A further last ditch move to save the drug's image was the attempt to rebrand rBGH as environmentally friendly. Jumping on the green bandwagon, the company saw an opportunity to trivialise the drug's welfare issues by presenting them as a necessary sacrifice to be made in a time of climate change crisis, where global food shortages and carbon emissions could only be solved by the production efficiencies rBGH provided.

A study led by a former Monsanto-employed consultant and co-authored by the company's rBGH technical project manager proposed that rBGH use provides a way to reduce greenhouse gases, as the same quantity of milk can be produced by fewer cows. But as the journal Scientific American pointed out, the study hinged on the assumption that the cows injected with the GM hormone produced more milk for a given amount of feed – a claim specifically disallowed by the FDA when the drug was approved in 1993. In fact an rBGH herd would be consuming the same amount of feed – land, oil-based fertiliser and fuel for intensive cereal production – as a slightly larger non-rBGH herd producing the same amount of milk. The rBGH cows would need more veterinary drugs and produce lower quality milk. Both the US National Academy of Sciences and the US Environmental Protection agency have dismissed claims that rBGH could have any environment benefits.

Market defeat

2007 represented a turning point in consumer rejection of Monsanto's GM hormone. Demand for clean milk reached a critical mass, and major American brands paid attention. Knowing the importance of meeting their customers' demands, the country's biggest supermarket chains rushed to ban rBGH from their milk. By 2008 Costco, Kroger, Publix, Safeway and, most significantly, Wal-Mart have all removed rBGH from their own-brand milk. This has had a major impact all the way down the supply chain, ultimately pushing the nation's biggest dairy, Deans Foods, and their near-exclusive supplier Dairy Farmers of America, to phase out use of the drug. Starbucks announced in January 2008 that they had gone entirely rBGH-free, as did Chipotle, a national restaurant chain. Manufacturing giant Kraft is now producing an rBGH-free version of its cheese products. At the end of July this year, in what has been hailed as a major victory for consumers, Monsanto announced that it would be selling off the failing product.

First major GM labelling initiative in USA: the Non-GMO Project

In a recent poll, 53% of Americans said that they would not eat GM foods. This shows a significant disparity between what consumers in the US want from their food system and what that food system is actually delivering. It also demonstrates a lack of consumer knowledge about the proportion of food in America that contains GM. The majority of this 53% will already be unwittingly consuming GM food every day against their wishes, because GM food is currently not labelled in the US, despite the fact that 87% of Americans believe that it should be.

The US Government's opposition to telling American consumers that some of their food is GM stems from the greatest coup by the GM companies, which was to ensure no GM food had to be tested for safety. The concept of "substantial equivalence" means that if a GM crop looks like its non-GM equivalent and grows like it, then it is assumed to be the same, and no safety testing is needed before people eat it. GM maize may have added virus and antibiotic resistance genes, and a gene that makes it express an insecticide in every leaf, stem and root – but to the US government it looks and grows like maize, so it is safe to eat. *"I think that* consumer rejection of GMOs is growing, and that giving the public here a choice will be a significant catalyst for continuing that trend"

Megan Thompson, Executive Director, the Non-GMO Project

This has meant that GM foods don't have to be labelled, and has resulted in widespread ignorance among consumers about the presence of GM in their food. Keeping consumers in the dark has prevented them from making real choices about the food they eat. Without labels the principles of supply and demand are no longer in effect as consumers can't send a message to farmers and manufacturers about what they do, and don't, want to eat.

Barriers to non-GM status for companies

Even though general consumer knowledge of GMOs is low in the US, there are still consumers who are well-informed and want to feed themselves and their families non-GM foods. North America has a thriving natural products industry and many organic and natural food companies. These companies have made a number of attempts to maintain non-GM status, however:

- companies can only control their own operating systems, with limited influence over others in the supply chain
- working in isolation companies do not have the market clout to secure clean supplies of ingredients, in some cases having to discontinue some product lines

as they could no longer secure guaranteed non-GM ingredients

- it is costly to devise and regulate a GMO traceability system, maintain a testing regime, market non-GM status, and educate and inform consumers
- the lack of one recognised label that guarantees non-GM status led to distrust of non-GM claims among consumers, exacerbated by a number of high profile incidents in which foods labelled GM-free were found to contain GMOs after all.

This has been a particular threat to organic businesses. In the US, the Government's organic standards say that certified foods should not be produced with GM ingredients, but a certain level of 'unavoidable' GM contamination is tolerated. This is seen by some as the thin end of the wedge, and as the GM crop acreage rises, organic companies have decided to take action to safeguard the future against the possibility of losing non-GM supplies of corn and soy in the next few years.

The Non-GMO Project

In 2005, two natural food retailers started the 'Non-GMO Project ', to develop a robust, industry-wide non-GMO verification system that would provide consumers with a trustworthy and recognisable non-GMO label to look for on products. The project would provide efficiencies of scale and would enable certification to be done in a simple low-cost way. The companies' united front could send a message to suppliers about non-GMO demand. They ensured the project would have robust scientific backing, and by 2007 the project expanded its board of directors to include representatives from all stakeholder groups in the natural products industry. "By giving people here an informed choice, the Non-GMO Project is going to help align the food production in North America with what people here really want."

Megan Thompson, Executive Director, the Non-GMO Project

The project is now supported by the biggest companies in the North American natural and organic sector, an industry worth over \$62 billion in the US alone. Well-known brands such as Whole Foods, Seeds of Change and Nature's Way are supporting the campaign, along with around 400 companies across the US and Canada, representing annual sales of around \$12billion.

The Non-GMO verification scheme has just opened (summer 2008) for product registration. Already several hundred products have been enrolled and it is anticipated that several thousand will be registered in the coming months. The project has also set up an ingredient supplier database to help manufacturers find uncontaminated ingredients through access to a list of verified non-GM suppliers. As increasing numbers of processors and distributors get their products verified, the database of trusted sources is growing.

The Non-GMO seal will be launched on labels in October 2009 in conjunction with a major consumer awareness campaign. Several things indicate that the US market is ready for this sort of initiative. Greater interest in healthy food among consumers is reflected by the steady growth in sales of natural and organic food. In 2007, the US natural products industry was worth \$62 billion and growing at 10%, while the organic sector was worth \$20 billion and growing at 21%. With the uproar over rBGH dairy products finally making GM a prominent consumer issue, American consumers are beginning to ask more questions about where their food comes from.

The project is anticipating registration of around 28,000 unique products from the organic and natural industry in the verification scheme over the next few years, representing 70% of the sector. By implementing the non-GMO standard, the project aims to keep new GM crops from gaining dominance and build a resilient non-GM food sector within the United States.

"The industry is fairly integrated as far as production facilities and ingredient supplies, and by gaining agreement about what "non-GMO" means we finally have the opportunity to really change things and take a united stand against unwanted GM contamination."

Megan Thompson, Executive Director, the Non-GMO Project

Above: the founding leaders of the Non-GMO Project

Rejection of new GM crops by farmers, regulators and plant breeders

On top of the growing consumer rejection of existing GM food in America, GM companies have faced rejection of a series of new products by US farmers and regulatory authorities. GM wheat, rice and alfalfa have all failed to get off the ground,

as has GM sweet corn, which consumers simply refused to eat because it tastes so bad. In fact, after the first handful of GM crops were introduced in America in the late 1990s, US farmers and consumers have stopped any more commercialisation of GM crops. This suggests that the claim from the pro-GM lobby that GM crops have been welcomed by US farmers deserves scrutiny.

The US regulatory approval process is also increasingly questioned. Proposed field trials of several new GM crops, such as drug-producing maize and sugar cane and herbicide tolerant bentgrass, have been subject to federal court cases. In each case the court ruled that the United States Department of

Agriculture (USDA) had broken the law in granting the trials approval without adequate safety data. In 2007 a federal district judge ruled that the USDA must halt approval of all new GM field trials until more rigorous environmental reviews are conducted.

GM Wheat

Following the widespread introduction of Monsanto's Roundup Ready GM maize, soybeans and oilseed rape (all engineered to be resistant to the weed-killer Roundup, which usually kills all plants), the company soon produced a Roundup Ready GM wheat variety. Monsanto expected their new wheat to get the same easy ride that greeted the first GM crops. However, several years experience of the first GM crops resulted in enormous opposition to GM wheat from the food and farming industries. American farmers had learned the hard way that their export markets did not want GM food, and the benefits for farmers that GM companies claim were obviously not enough to make the risk worth running. As GM varieties of maize, soybeans and oilseed rape gained in dominance, initially through deliberate plantings but accelerated by cross-contamination, US farmers had watched helplessly as huge international customers from Europe, Japan and other countries rejected their grain in preference to non-GM crops.

Studies predicted that GM wheat would fare no better. An economic report by Iowa State University produced in 2003, and updated in 2005, estimated that the commercial introduction of a GM variety of wheat could result in the loss of one third to one half of the US export market and that the price of spring wheat would plunge by a third. In part there was heightened opposition to GM wheat both within the US and internationally because, while existing GM crops are primarily grown for animal feed, wheat is used both for animal feed and for human food. The idea of GM daily bread

was a step too far for consumers. The mainstream farming industry in the US lobbied against this new GM crop, saying that the introduction of GM wheat would be a serious threat to the economy, and the Canadian Wheat Board produced a damning report showing that, based on their country's experience of herbicide tolerant GM crops thus far, Monsanto's GM wheat should also be banned on environmental grounds.

In the face of such categorical rejection, Monsanto abandoned its field trials of Roundup-Ready wheat in 2004, stating that it was more profitable for the company to concentrate its efforts on soya, maize and oilseed rape.

GM Alfalfa

Alfalfa, a grass used for animal feed, is the fourth most widely grown crop in the USA, behind corn, soybeans and wheat, and it is the third most economically valuable. More than 20 million acres of alfalfa are grown in the United States and it is the most important forage crop, providing feed for the nations beef and dairy cattle in particular.

In 2005, a GM strain of alfalfa was approved by United States Department of Agriculture (USDA). It had been developed by Monsanto in partnership with America's largest alfalfa seed company, Forage Genetics International. This alfalfa was engineered to withstand Monsanto's trademark glyphosate herbicide 'Roundup'. However, despite regulatory approval, a large number of American farmers also rejected the introduction of this new GM crop.

Alfalfa is an open-pollinated crop and pollen grains can travel long distances in the wind or via pollinating insects. This poses a serious contamination risk for conventional and organic growers, and cross-pollination could quickly reduce and even wipe out the US supply of non-GM alfalfa. Not only are those growing non-GM alfalfa unprotected from the economic damage that GM contamination causes, but they are also vulnerable to harassment and lawsuits from Monsanto if GM alfalfa is found on their land. Monsanto sues farmers with GM crops growing on their farms for patent violation, even if they have never actually planted any GM seeds themselves. In addition, many farmers currently produce normal alfalfa with minimal, if any, use of weed-killers. The introduction of a GM herbicide tolerant variety would not only encourage the use of far greater quantities of glyphosate, but also speed the growing development of glyphosate resistance in weeds, meaning that ever more toxic herbicides would need to be applied to all alfalfa crops to control them.

In February 2006, a coalition of alfalfa producers filed a lawsuit against the USDA claiming that GM alfalfa was a threat to both the environment and to farmers' livelihoods. The case was heard a year later, and in a landmark decision, the court ruled in their favour, declaring that the USDA had violated the law and had been "cavalier" in deciding that a full environmental impact statement was not necessary. The judge stated that "A federal action that eliminates a farmer's choice to grow non-genetically engineered crops, or a consumer's choice to eat non-genetically engineered food, is an undesirable consequence". The USDA was ordered to withdraw its approval of the GM alfalfa, a ban was placed on all planting of the crop and the sale of GM alfalfa seeds has now been prohibited throughout the USA. Despite an appeal by Monsanto, their GM alfalfa remains illegal until they can prove through a full environmental review that farmers and consumers will be protected, and non-GM crops will not be affected by their product.

GM Rice

Despite the development and USDA approval of several strains of GM rice, not one type is grown commercially in the United States. The US rice industry has consistently opposed the growing of GM rice, aware that there is no market for it. A number of key events have ensured that they are in no hurry to change their minds. In the last two years, catastrophic GM contamination incidents have put the entire US long-grain rice industry in crisis and cost the sector over \$1 billion. In 2006 it was discovered that Bayer CropScience, a giant biotechnology firm, had accidentally contaminated over 30% of the entire US long-grain rice supply with three of their GM varieties, two of which had not been approved for cultivation or consumption anywhere in the world. None of the contaminant strains had ever been grown commercially, and the only possible source of contamination was traced to field trials carried out years earlier, between 1998 and 2002. It has not been established whether the contamination occurred through cross-pollination or through a post-harvest mix-up, but there should have been no route to the food supply for these experimental crops. The incident had powerful global consequences. The EU, Japan, Korea and the Philippines imposed strict testing requirements and effectively shut down rice trade with the US, halting shipments, cancelling orders and recalling rice from supermarket shelves. Several other countries imposed bans on US rice or demanded non-GM certification before purchase, and soon the major rice-importing countries had switched to suppliers such as Thailand or Vietnam, who quickly pledged to remain GM-free. Furious US rice farmers and traders filed multi-million dollar class action lawsuits against Bayer CropScience, but even compensation for their harvests will not undo the serious and continuing damage to the US rice industry.

A second serious contamination incident occurred just one year later, in early 2007. It was announced that 'Clearfield 131', one of the most popular non-GM long-grain rice seeds had become contaminated with an unapproved GM

strain, again from Bayer CropScience. Sale of the seed was quickly banned by the USDA, and some farmers were forced to destroy crops already sown. Combined with the ban on rice seed that had been contaminated in the Bayer incident of 2006, this new discovery had the effect of seriously cutting the amount of available rice seed for farmers to plant, and led to reduced harvests with some farmers abandoning rice growing altogether. BASF, who produce Clearfield 131 lost up to \$9 million dollars in the incident.

Bayer's clear inability to control contamination has led to rice producers calling for a ban on all experimental outdoor plantings of GM rice, and it seems that the commercialisation of any GM rice varieties is unlikely to happen in America in the foreseeable future.

Highest yielding soya strains are non-GM

With pressure to develop higher yielding varieties of food crops, US plant breeders are rejecting GM technology in favour of more reliable and effective methods. Soya farmers have been frustrated for years by the slow pace of increases in soya yields. This has been due in part to the dominance of Monsanto's Roundup Ready soya over the last decade. This GM soya has been shown to yield less than non-GM varieties. However, Pioneer, a branch of biotech giant DuPont, have finally had some success. Ignoring unreliable GM techniques that disrupt the plant's biology, Pioneer have instead used marker-assisted selection (MAS) breeding. MAS uses knowledge of the genome to speed up the selection process, but uses conventional cross-breeding that allows the plant to maintain its own safe-guards on gene expression. MAS is a technique long supported by environmentalists and organic farmers. Results of crop trials demonstrate a 5-10% yield advantage for this MAS soya over competitive varieties. This approach echoes the latest rice breeding research taking place in South East Asia, as scientists pursuing the ideal of flood and drought resistant varieties have left GM techniques behind and are concentrating on the more successful application of MAS methods to meet these goals.

Conclusion

Since the introduction of GM food, probably the biggest selling GM food product bought by consumers in the US has been GM hormone-treated milk. Dairy products produced with Monsanto's GM growth hormone achieved huge market penetration following their launch in 1994, but are now on their way out due to consumer resistance. This resistance to GM-produced milk started when consumers began to see non-GM labelled milk in their shops.

Labelling milk as 'GM hormone free' has been the only significant move to label any food as 'non-GM' until now. Just open for product registration, the Non-GMO Project is a major new market-led initiative in North America that will provide the sort of labelling that killed GM food in the EU, Japan and other countries. Every attempt to pass laws on GM labelling in the US has been fought fiercely by Monsanto and other GM companies, but there is now strong support from companies with combined sales of \$12 billion to give consumers accurate information about GM in their food.

Even though US consumers are turning against GM, the GM industry has always claimed that US farmers love GM crops. But in fact farmers rejected genetically modified wheat, one of the largest commodity crops in the world, and no GM wheat is grown in North America. Farmers have also rejected GM alfalfa, the fourth most widely grown crop in the US. Following a court victory for farmers, the USDA was ordered to withdraw its approval of the GM alfalfa, a ban was placed on all planting of the crop and the sale of GM alfalfa seeds has now been prohibited throughout the USA. Despite the development of many commercial strains of GM rice, no GM rice is being grown commercially in the US, and even in the case of soya, one of the most widely grown GM crops, the newest high-yielding varieties being developed are non-GM rather than GM.

These developments, combined with the possibility of Democrat Presidential Candidate Barack Obama's pledge to support legislation to label GM food if he should get elected, suggest that GM companies are in for a difficult few years in the USA. The increasing focus on the climate change impacts of farming, to which GM crops offer no solution, and expensive oil driving up the cost of nitrogen fertiliser, on which GM crops are dependent, also suggest the environmental and economic pressures on GM will increase.

With consumers, farmers and politicians in America losing their enthusiasm for GM crops, it is not surprising that the GM industry has scaled up its efforts to find a new market in the EU. Major European farming countries, like the previously enthusiastically pro-GM French and German governments have gone cold. Other EU countries, like Greece, have always resolutely opposed GM crops, and among the newer EU member states, many, such as Poland, have already adopted non-GM policies. Over 175 regions and over 4,500 municipalities and local areas in Europe have declared themselves GMO-free. The Irish Republic, Northern Ireland, Scotland and Wales are all committed to GM-free policies. This has left just the present English government ministers on an increasingly lonely and desperate pro-GM quest, as consumers in their main pro-GM ally, the United States, increasingly reject this uncertain, risky and unproductive technology.

Kathleen Hewlett and Peter Melchett

The Soil Association October 2008

Bibliography

'Can Bovine Growth Hormone Help Slow Global Warming?' *Scientific American*, July 2, 2008

CBS News/New York Times Poll. April 25-29, 2008

Challacombe, D. N., and Wheeler. E. E. 'Safety of milk from cows treated with bovine somatotropin.' Lancet 344:815-816, 1994

'Dairy 2007 Part I: Reference of Dairy Cattle Health and Management Practices in the United States, 2007,' Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, October 2007.

Dohoo IR, DesCôteaux L, Leslie K, et al (2003). "A meta-analysis review of the effects of recombinant bovine somatotropin. 2. Effects on animal health, reproductive performance, and culling". *Can. J. Vet. Res.* 67 (4): 252–64.

Dohoo, I., Leslie, K., Descôteaux, L., Shewfelt, W. (2003). "A meta-analysis review of the effects of recombinant bovine somatotropin". *Can J Vet Res* 67 (4): 241–251.

European Commission. 'Report on Public Health Aspects of the Use of Bovine Somatotropin.' 15-16 March 1999. Food Safety – From Farm to the Fork. http:// ec.europa.eu/fs/sc/scv/out19_en.html

'Guide to Genetically Modified Alfalfa', Western Organisation of Research Councils, 2008.

Prosser, C. G., Fleet, I., Corps, A. N. 'Increased secretion of insulin-like growth factor 1 in milk of cows treated with recombinantly derived bovine growth hormone.' *Journal of Dairy Research* 56(1):17-26, 1989

'rBGH: Anything but Green'. Food and Water Watch, May 2008

'Reinventing Rice to Feed the World', Science, vol. 321, 18 July, 2008

Report of the Canadian Veterinary Medical Association Expert Panel on rbST, Health Canada, November 1998.

Report of the Working Group on the Safety of Recombinant Bovine Somatotropin (rBST), UK Veterinary Products Committee, June 1999

'Report on Animal Welfare Aspects of the Use of Bovine Somatotropin'. Report of the Scientific Committee on Animal Health and Animal Welfare of the European Commission. March 10, 1999.

Wisner, Robert N., "Round-Up Ready® Spring Wheat: Its potential short-term impacts on U.S. wheat export markets and prices", *Economics Staff Report*, Iowa State University Department of Economics, Ames, Iowa, July 1, 2004.

Yu, Herbert and Thomas Rohan. Review. 'Role of the Insulin-like Growth Factor Family in cancer Development and Progression.' *Journal of the National Cancer Institute* 92:1472-89, 2000.

Soil Association

The Soil Association is the UK's leading environmental charity campaigning for a global shift to sustainable, organic food and farming practices.

Founded in 1946 by a far-sighted group of farmers, doctors and concerned citizens, the organisation is dedicated to bringing about change by creating a growing body of public opinion that understands the direct link between farming practice and plant, animal, human and environmental health.

Today the Soil Association is an internationally respected authority on sustainable agriculture and recognised champion of healthy food, which uniquely represents and offers practical solutions to everyone involved in the food chain – farmers, food processors, retailers and consumers.

The Soil Association is reliant on the support of its members, donors and the public to carry out its work. You can help grow the organic movement, by joining the Soil Association you will be part of a dynamic organisation pressing to change the predominant food culture in this country. Single UK membership costs just £24 a year.

To join, visit www.soilassociation.org or call 0117 914 2447.

Influencing policy makers, food companies, farmers, consumers and citizens is an essential part of our work, to create the conditions for a major expansion of organic food and farming. Our other relevant policy reports include:

Seeds of doubt: North American farmers' experience of GM crops *Silent invasion:* the hidden use of GM crops in livestock feed

For copies please call the Soil Association on 0117 314 5180 or visit our website www.soilassociation.org

Soil Association, South Plaza, Marlborough Street, Bristol BS1 3NX T 0117 314 5000 F 0117 314 5001 www.soilassociation.org www.whyorganic.org

Soil Association Scotland, Tower Mains, 18c Liberton Brae, Edinburgh EH16 6AE T 0131 666 2474 F 0131 666 1684 www.soilassociationscotland.org

© Soil Association 2008 SA0456.1008 Registered charity no. 206862 (England and Wales) Registered charity no. SC039168 (Scotland)

Taro is Samoa's main staple food as well as a lucrative cash crop. When taro leaf blight (TLB) hit the country in 1993, taro exports were worth \$T20 million annually.

TLB wiped out the entire taro industry in a matter of months, it raised food security concerns and export revenues nose-dived thus upsetting the nation's comfortable level of foreign reserves.

Across the food sector, taro was soon replaced by less nutritious starchy staples in the form of instant noodles and rice.

Samoa's taro industry is now slowly getting back on its feet after the devastating outbreak of TLB caused by the fungus Phytophtora colocasiae.

New taro cultivars recently released have been assessed for their production qualities and closely studied in trial plots in various locations around the country.

This approach has allowed farmers to have direct input to the assessment of the cultivars, which passed the acid test for taro production in Samoa post-TLB.

Their assessments - good tasting, high yielding and, most importantly they're TLB-tolerant. "They are very similar to the kind of taro we used to have where taste was the top priority," the CEO for the Ministry of Agriculture Asuao Kirifi Pouono said.

"These new varieties all have the taste we Samoans prefer," he reminisced about the so-called highly favoured taro Niue.

This was the main variety grown before 1993 but was highly susceptible to TLB. "We call it mapo or firm to bite. They are also red, similar to the taro grown throughout Samoa pre-TLB."

In October, three new taro cultivars were launched by the Minister of Agriculture Taua Kitiona.

One of the varieties named Taua after him. The other two, taro So'o and taro Tonu, are named after researchers who worked on the breeding programme at Nuu Crop Development. Asuao said more than 20 new varieties have so far been released to farmers since the breeding programme started.

The main push now is to bulk up these new cultivars to provide adequate planting material for farmers.

In response to the TLB outbreak in Samoa, and in recognition of the continuing loss of taro genetic diversity throughout the Pacific, the Australian government, through AusAID, funded a regional project entitled Taro Genetic Resources: Conservation and Utilisation (TaroGen).

One component of the project focused on breeding and was based at the Alafua Campus of the University of the South Pacific (USP). The Taro Improvement Programme was designed to work

with national programmes run by MAFF and with farmers around the country to develop a national strategy for taro improvement.

The first stage of the project evaluated taro diversity in regional collections and in other cultivars sent to Samoa in response to a request for help. Initially, new TLB-tolerant varieties from the Federated States of Micronesia, Palau and the Philippines were introduced, both to maintain taro production and to assess their susceptibility to TLB in Samoa.

Taro Fili (from the Philippines) became the first TLB-tolerant variety that local consumers liked. When boiled, it had the right firmness and taste but developed too hard a texture when baked in the umu (Samoan earth oven).

A variety from Palau with good tolerance to TLB, good taste and reddish in colour was also well received. Polo voli, (so called because of its volley ball shape) became a winner with farmers and consumers.

The Taro Improvement Programme put a participatory breeding project in place to work with farmers to screen and select new clones, initially from the Pacific.

The active participation of taro growers has been the key to the success of the programme, which has continued work on breeding and selecting superior taro varieties since the TaroGen project concluded.

Funding and technical assistance is being maintained with support from the Secretariat of the Pacific Community (SPC) and USP.

The recent release of the new cultivars shows the importance of agencies working together to tackle a problem. It also highlights the benefits of a participatory approach to variety selection and breeding.

The need to take into account different growing conditions within a country, and changes in these conditions, becomes even more important with the increasing impact of climate change. The programme has recently developed crosses (lines) between taro from the Pacific and from Asia, which are receiving excellent feedback from farmers in Samoa.

Donors are often concerned about the sustainability of a project once their funding support has ceased.

The fact that the Taro Improvement Programme is still active and is supported nationally and regionally is convincing evidence of the project's sustainability.

• For more information, please contact the helpdesk of SPC Land Resources Division: Irdhelpdesk@spc.int.

{backbutton}

AusAID/SPC TARO GENETIC RESOURCES: CONSERVATION AND UTILISATION

A Bibliography of Taro Leaf Blight

Prepared by

Julia Brunt, Danny Hunter and Charles Delp

April 2001

SECRETARIAT OF THE PACIFIC COMMUNITY NOUMEA, NEW CALEDONIA

©Copyright Secretariat of the Pacific Community, 2001

All rights for commercial/for profit reproduction or translation, in any form, reserved. The SPC authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial/for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission.

Original text: English

Secretariat of the Pacific Community Cataloguing-in-publication data

AusAID/SPC taro genetic resources: conservation and utilisation. Bibliography

1. Taro-Genetics-Oceania-Congress. 2. Plant conservation-Oceania-Congresses

I. Title II. Secretariat of the Pacific Community

ISBN 982-203-837-2

Funded by the Australian Government

Prepared for publication at the Secretariat of the Pacific Community Suva, Fiji and at SPC Headquarters, Noumea, New Caledonia. Printed at SPC, Suva 2001

Contents

INTRODUCTION	1
TARO LEAF BLIGHT: With special reference to the Pacific Islands	3
Introduction	3
Taro leaf blight and the causal pathogen P. colocasiae	3
History of taro leaf blight in the Pacific Islands	4
The impact of taro leaf blight in Samoa	6
Management of taro leaf blight	7
Taro Genetic Resources: Conservation and Utilisation (TaroGen) —	
a regional approach to taro improvement	8
Conclusions	9
TARO LEAF BLIGHT BIBLIOGRAPHY	11
AUTHOR INDEX	83
SUBJECT INDEX	93

Introduction

This bibliography has been prepared by the Taro Genetic Resources: Conservation and Utilisation (TaroGen) project. TaroGen is an AusAID-funded regional project for taro improvement. It is implemented by the Secretariat of the Pacific Community (SPC) in collaboration with the University of the South Pacific (USP), the National Agricultural Research Institute (NARI), the International Plant Genetic Resources Institute (IPGRI), HortResearch, Queensland University of Technology (QUT) and the University of Queensland (UQ). Julia Brunt contributed to this project while working for the SPC Plant Protection Service, Suva, Fiji.

The purpose of this bibliography is to draw together publications on taro leaf blight in an effort to assist research. The bibliography updates an earlier edition (Taro leaf blight—a preliminary bibliography, by P. Walton) prepared in 1993. This edition now includes some 452 references to the literature, with abstracts where available.

Sources available to the compilers included:

AGRIS 1975—August 1995 (FAO)

CABPESTCD 1973—August 1998 (CAB International)

SPC library

IRETA library

Personal communications

Not all the papers included in this bibliography have been seen by the compilers, so there are a few incomplete references. We have also certainly missed others, especially from regions outside the Pacific and amongst the rapidly growing resources available on the World Wide Web.

We hope this bibliography will be widely used and any comments, corrections and additions are welcomed. In this way, the bibliography may be updated in future.

Please send all comments to:

Danny Hunter Australian Team Leader Taro Genetic Resources: Conservation and Utilisation (TaroGen) Secretariat of the Pacific Community (SPC) Private Mail Bag Suva Fiji Tel: (679) 370 733 Fax: (679) 370 021

Fax: (679) 370 021 E-mail: dannyh@spc.org.fj Ł Ł ł ł 1 ł ł 1

Taro leaf blight With special reference to the Pacific Islands

Introduction

Plant diseases pose a serious threat to food security and national economies worldwide. Recent examples are the southern corn leaf blight and coffee rust epidemics of the 1970s. In the Pacific region the impact of taro leaf blight, caused by the fungus *Phytophthora colocasiae*, and the threat it poses to countries not yet affected by the disease, illustrate this point clearly. The spread of the fungus to Samoa in 1993 demonstrated once again the devastating potential of the disease when, over a period of six months, the country lost an export industry worth US\$10 million per year with a similar value for domestic supplies. Events of similar catastrophe occurred in Solomon Islands 50 years earlier and caused a loss of varieties and major changes to the cropping systems.

Taro leaf blight and the causal pathogen P. colocasiae

To date, taro leaf blight has been recorded in a number of countries in the Pacific region, most recently in Samoa in 1993. The disease is mainly a foliar pathogen although postharvest storage rots also occur. Initial symptoms of the disease are small brown water-soaked flecks on the leaf that enlarge to form dark brown lesions, often with a yellow margin. Secondary infections lead to rapid destruction of the leaf, which may occur in 10–20 days or less in very susceptible varieties. The normal longevity of a healthy leaf is about 40 days. The disease significantly reduces the number of functional leaves and can lead to yield reductions of the magnitude of 50% (Trujillo and Aragaki, 1964; Trujillo, 1967; Jackson, 1999). Inoculum in the form of spores is spread by wind-driven rain and dew to adjacent plants and nearby plantations. The disease can also be spread on taro planting material and the fungus has been reported as remaining alive on planting tops for about three weeks after harvest (Jackson, 1999). This is the most likely source of the pathogen in new countries and the means for its rapid spread within a country, once established. Therefore, strict quarantine measures are required as a first line of defense against the disease.

In addition to corm yield losses due to the reduced leaf area in diseased plants, there is also a corm rot caused by *P. colocasiae*. This is mainly a problem when taro corms are stored for more than seven days but not in subsistence economies where corms are harvested and consumed within days.

Fortunately, *P. colocasiae* does not have a wide host range. *Xanthosoma* taro is immune. Although *Alocasia* taro can be infected by the pathogen, there is little inoculum produced and therefore little likelihood of an epidemic on this host (personal observation).

Raciborski (1900), in Java, was the first person to study taro leaf blight disease and was the first to name the causal pathogen. There is limited information on the origin of *P. colocasiae* and the magnitude of the area of origin remains to be defined (Zhang *et al.*, 1994). Ko (1979) has indicated that Asia may be the centre of origin of *P. colocasiae* given that it is the world's

centre of origin for many wild and cultivated varieties of taro. Prior to this, Trujillo (1967) had also speculated on a Southeast Asian origin for the pathogen. One of the indications of the centre of origin of a fungus such as *Phytophthora* is the existence of an A1/A2 mating type ratio of about 1:1 (Zentmyer, 1988). In order to determine if Taiwan was inside the centre of origin Ann *et al.* (1986) screened 799 isolates of *P. colocasiae*. All behaved as A2 mating types, indicating that the fungus is not indigenous to this area. Only A1 mating type has been found in India, indicating that it is not the centre of origin (Narula and Mehrotra, 1980). Evidence for an Asian origin of *P. colocasiae* has recently come from China (Zhang *et al.*, 1994), where previous reports had indicated that only the A2 mating type occurred (Ho *et al.*, 1983). Of 280 isolates of *P. colocasiae* obtained from Hainan Island, 136 were A1, 102 A2 and 42 A0 mating types. Such findings indicate that Hainan Island is inside the centre of origin of *P. colocasiae*. More recent work suggests that only mating type A2 occurs in Papua New Guinea (PNG), Hawai'i, Samoa and Guam (Fullerton *et al.*, 2000)

Based on a possible Southeast Asian origin for the pathogen, Trujillo (1967) postulated that the disease dispersed into the Pacific region by three different routes: 1. To Hawai'i via the Philippines; 2. From Taiwan to Micronesia via the Philippines; and 3. to Fiji via PNG and Solomon Islands. At that time taro leaf blight had been reported as present in Fiji but this was an obvious misidentification. The movement of taro leaf blight via PNG and Solomon Islands would appear to be a separate route and is supported by anecdotal evidence from inhabitants of these countries expressing that the disease only appeared after the Western Pacific Campaign of World War II (Oliver, 1973).

Ooka (1990) speculates that movement on the northern route went from Java to Taiwan, where Sawada reported the disease in 1911. From Taiwan it is believed to have moved to Japan and then to Hawai'i where it arrived in 1920 (Carpenter, 1920). The disease was first recorded in the Philippines in 1916 and movement to Micronesia probably occurred from there. The disease was recorded in Guam in 1918 (Weston, 1918).

History of taro leaf blight in the Pacific Islands

There has been little documentation of the impact of taro leaf blight as it has spread from country to country in the Pacific. What has been documented covers mainly Papua New Guinea. What is known is that wherever it has occurred in the region, many growers have been forced to abandon taro and rely on other root crops (Jackson, 1996).

The earliest records for the appearance of the disease in the Pacific Islands are for Guam (1918) and Hawai'i (1920), which precede the appearance of the disease in the more southern Solomon Islands and PNG by a couple of decades. Prior to the arrival of taro leaf blight in Hawai'i there were approximately 350 different varieties of taro in the country. Few have survived the disease and today the number of Hawaiian taros is less than 40 (Trujillo, 1996). In Guam, where the disease has been present for a longer period than Hawai'i, the disease is considered unimportant today (Wall, 1996). Recent interviews among farmers in Guam have highlighted that there may be as many as 23 varieties of taro on Guam but most are recent introductions with only six predating the arrival of taro leaf blight (Manner, 1991). The relatively few traditional taro varieties is believed to be a consequence of the disease (Wall, 1996).

In Micronesia the disease seems to have been brought in during the Japanese occupation of Chuuk and Pohnpei and taro cultivation appears to be declining rapidly. Taro leaf blight has contributed to significant changes in dietary patterns and cropping systems in Micronesia where earlier this century cassava became the staple instead of taro (Barrau, 1961; Jackson, 1996). On Pohnpei, the majority of the taro varieties that existed before the arrival of the Japanese are gone (Trujillo, 1996) and leaf blight has been responsible for the serious decline in taro as a crop plant (Santos, 1993; Raynor and Silbanus, 1993). On Pohnpei, taro now ranks behind yams, banana, imported rice and breadfruit as a staple crop (Primo, 1993; Raynor and Silbanus, 1993). Despite heavy rainfall and the long time presence of leaf blight in Pohnpei, farmers are still managing to produce taro. Wall (1996) reports that this is a result of the disease having selected more resistant taro varieties and the incorporation of sanitation and traditional mixed cropping systems for the management of the disease.

Taro leaf blight is believed to have contributed to the decline in taro production and its displacement in some areas by sweet potato in PNG. It is thought that the disease spread to PNG from Southeast Asia through Indonesia during the WWII (Kokoa, 1996). In Bougainville, P. colocasiae was first reported around the close of the war (Connell, 1978). It was the firm belief of the local population that the disease was not present before then. The impact of the disease in some areas was devastating and throughout lowland Bougainville taro was almost wiped out. It has been reported that the epidemic of taro leaf blight on Bougainville resulted in the deaths of about 3000 people (Putter, 1993) and in most areas sweet potato replaced taro as the main staple. The real impact of the blight is difficult to accurately assess. At the time of the appearance of the disease the Japanese were pillaging many of the local taro gardens. As a result, there was a serious lack of planting materials. Many people fled their villages and numerous cases of starvation and malnutrition occurred. It is difficult to distinguish the impact of the disease, if any, from these events. It is possible that the impact of the disease was delayed for a few years following the Japanese occupation. At the close of WWII people returned to village life. As the Japanese had taken most of the planting material people turned to many of the early maturing sweet potato varieties that existed in the now disbanded Japanese gardens to fill the interim. Later, when taro planting material did become available, it was wiped out again by the blight providing yet another setback for farmers. Unfortunately, the coincidence of the spread of taro leaf blight in Bougainville with WWII makes it difficult to attribute any given change solely to the effects of leaf blight (Packard, 1975).

The disease continues to spread in PNG and in 1976 a severe epidemic occurred on the island of Manus and in 1988 the disease occurred in Milne Bay for the first time, destroying the crop (Jackson, 1996).

In Solomon Islands it is also difficult to determine the impact that taro leaf blight had on taro production and cropping patterns in the country. Taro leaf blight first appeared in the Shortland Islands in 1946 (Liloqula *et al.*, 1996) and within the next few years had spread to most of the provinces as a result of the increased movement of people and produce in the post war years. What is known is that taro cultivation declined quite drastically in Solomon Islands at this time being replaced by sweet potato, which was a later arrival in the country. Whether the introduction of sweet potato alone or combined with the effects of taro leaf blight are the reasons for the decline in taro are difficult to ascertain.

The impact of taro leaf blight in Samoa

The most recent introduction of the disease was to the Samoan islands in 1993. Taro leaf blight was first detected in the Western District highlands of Tutuila Island, American Samoa on 15 June 1993. The disease has severely constrained taro production in the country (Gurr, 1996). Within a year of the introduction of the disease it had caused over 95% reduction in the supply of taro to the public market. In less than one month taro leaf blight was diagnosed and confirmed in Samoa. It was first observed on the the island of Upolu at Aufaga Aleipata and two days later from Saanapu and adjacent districts of Alafou, Samusu, Utufaalalafa, Malaela, and Lepa. The crop at this time was highly uniform and genetically vulnerable. The disease spread rapidly throughout the country severely affecting all local varieties, but was most severe on taro variety *Niue*, which was unfortunate as this was the variety of choice for commercial production because of its quality and taste.

It is believed that the rapid spread of the disease was encouraged by the movement of infected planting materials around the two main islands, Upolu and Savai'i. At this time there was a major replanting of taro underway in the aftermath of Cyclone Val and anything up to 10,000 plants could be planted by a single farmer in a one week period (Semisi, 1996). Various factors contributed to the rapid spread of the disease in Samoa. The area planted with taro *Niue* at the time was extremely large and effectively ensured a monocrop situation comprising a highly susceptible variety. There was a continuous and abundant source of taro for the disease because of the practice of many farmers to interplant on old plantations and stagger their cultivation. Combined with the movement of planting material and the ideal weather conditions that exist in Samoa for the disease, it is not surprising that the disease reached epidemic proportions.

Taro in Samoa is the traditionally favoured root crop and was considered an essential component of an everyday meal. Although this popularity is based on dietary and cultural factors, taro is also favoured for its considerable productivity in the fertile and high rainfall environment. Prior to the disease outbreak taro was the major export earner in the country and over 90% of households in Samoa were growing the crop (Ward and Ashcroft, 1998). In the twelve-month period prior to the outbreak of taro leaf blight 180,191 kg of taro were brought for sale at the local market. In the twelve-month period subsequent to the outbreak of the disease 59,212 kg were brought in for sale. Seventy-five per cent of this volume was brought in during the first three months of the twelve-month period when the impact of the disease was still to be realised (Chan, 1996). Paulson and Rogers (1997) report that supplies of taro on the local market in June 1994 were only 1% of the supplies that were available in June the previous year. The massive losses due to the disease had a similar impact on the export of taro. The first three months of 1994 saw only 60,000 kg of taro exported which was valued at about WS\$56,000 (Chan, 1996). This represents about 0.5% of the 1993 export figure.

One of the initial responses of the Samoan Government to the disease was to encourage diversification of other crops, helping to explore alternative commercial agricultural enterprises (Semisi, 1996; Jackson, 1996). The government also provided assistance through the supply and distribution of planting material. Farmers quickly diversified into a range of other staple crops and bananas and *taamu (Alocasia macrorhiza)* replaced taro as the main staple.

Management of taro leaf blight

The recent outbreak of taro leaf blight in Samoa provides a good overview of the measures that have been used in an attempt to manage the disease.

Initial efforts to minimise the disease

Early efforts to contain taro leaf blight in Samoa included a spraying programme of infected plantings with the fungicides Ridomil MZ and Manzate. Staff from the Ministry of Agriculture, Forestry, Fisheries and Meteorology (MAFFM) carried out routine fungicide spraying of infected plantations. Later, fungicides were supplied free to farmers through village *pulenuu* (village mayors) and application equipment was made available at subsidised prices at the local Agricultural Store (Chan, 1996). At the completion of this initial spraying campaign over WST\$600,000 had been spent.

In conjunction with fungicide spraying, quarantine efforts to minimise the movement of planting material, leaves and soil on the island of Upolu and between islands were enforced together with a public awareness campaign to inform farmers and the general public. This included information on disease symptoms, epidemiology and disease control. The campaign utilised radio, television, videos and print media including leaflets and newspaper.

These three actions had minimal effect on the spread of the disease. Unseasonal wet weather in the months following the introduction of the disease into Samoa and the fact that planting material was still being routinely moved meant the disease spread rapidly. By the end of 1993 the disease had spread to most of Savai'i and farmers were beginning to diversify with alternative crops.

Cultural control

Various cultural methods have been recommended for the control of taro leaf blight. Removal of infected leaves has been effective during the early stages of disease development in a number of countries. Wide spacing of plants has been reported to reduce disease severity but this appears to have a negligible effect when conditions favour disease development. Other cultural methods that have been recommended include delaying planting on the same land for a minimum of three weeks, avoiding plantings close to older infected ones and preventing the carryover of corms or suckers which can harbour the pathogen from one crop to the next (Jackson, 1999). Preliminary findings have indicated that fertilizer treatment may also help the plant cope with leaf blight (Tilialo *et al., 1996*). Trials in Samoa to investigate the effect of planting time, intercropping, the role of fertilisation on the incidence and severity of the disease and the effect of leaf removal have been inconclusive (Chan, 1997).

Chemical control

Jackson (1996) reports that the disease can be controlled by spraying copper fungicides. Copper oxychloride applied at a rate of 4.5 kg per 100 litres of water per hectare gave good control of the disease in Solomon Islands. Early trial work in Samoa concentrated on trials of Ridomil MZ, Manzate and phosphorous acid (Foschek). Pot experiments demonstrated the superiority of phosphorous acid over Ridomil MZ. Further experiments comparing phosphorous acid formulations (Foschek, Agri-Fos 400 and Foli-R-Fos) found no differences
in terms of disease control (Chan, 1997). In Samoa, a recommendation for fungicide spraying was made for Foschek, alternated with Manzate to minimise resistance problems but the costs were prohibitive for the majority of farmers.

Resistant varieties

Most farmers who traditionally grow taro cannot afford the extra costs required for fungicides and labour involved in leaf removal and spraying. Alternative sustainable strategies for the management of the disease are needed. The use of resistant varieties is one such strategy. Given the susceptibility of local taro varieties to leaf blight in Samoa and the impact that the disease has had on varietal diversity, Samoa initiated a programme to screen and evaluate exotic taros. Of those varieties screened in the field *PSB-G2*, *Pwetepwet*, *Pastora* and *Toantal* were found to be more resistant to leaf blight. *Pwetepwet*, *Pastora* and *Toantal* originated from the Federated States of Micronesia (FSM) and were obtained from the Tissue Culture Unit at Alafua Campus, USP. *PSB-G2* was received from the Philippine Seed Board in 1994.

These four varieties were further multiplied and evaluated in trials at USP-Alafua during 1996–1998. A preliminary trial demonstrated that disease severity recorded for each variety was not significantly different. *Pastora* produced the largest corms followed by *PSB-G2*, *Pwetepwet* and *Toantal* (Hunter and Pouono, 1998). Samoans prefer dry, firm-textured taro and therefore, per cent dry weight is one measure of eating quality. Dry matter content of corms was highest for *PSB-G2* (37%) and taste tests at USP-Alafua demonstrated that both *Toantal* and *PSB-G2* were most preferred. MAFFM taste tests also rated *PSB-G2* highest followed by *Toantal* (Chan, 1997). Acceptibility of PSB-G2 (known locally as taro *Fili*) in Samoa has been high and a recent impact assessment carried out among farmers on the multiplication, performance and use of the variety confirms that it is performing well (Iosefa and Rogers, 1999). Additional varieties collected from Palau have shown good levels of resistance against taro leaf blight in Samoa. Indications are that farmers in Samoa are adopting a diversity of varieties from the FSM, Palau and the Philippines.

Taro Genetic Resources: Conservation and Utilisation (TaroGen) — a regional approach to taro improvement

The impact of taro leaf blight, the subsequent loss of taro genetic resources, and the continuing vulnerability of other Pacific Island countries to the disease was the major impetus behind the development of the Taro Genetic Resources: Conservation and Utilisation (TaroGen) regional project. In recognition of the urgency of the problem, three regional meetings to discuss disease control, loss of genetic resources and ways to prevent further spread of the disease were held in the region between 1993 and 1995. Outcomes from these meetings contributed to the formulation of the TaroGen project. The project is implemented by the Secretariat of the Pacific Community (SPC) and funded by the Australian Government. The project represents a collaboration with the International Plant Genetic Resources Institute, National Agricultural Research Institute and the University of the South Pacific and is working with national programmes to develop a regional strategy for taro genetic resource conservation and crop improvement. A unit has been established within SPC to provide the expertise required in conservation, plant breeding and project management. The project is designed to assist Pacific Island countries in the collection and conservation of taro

germplasm and in the use of the genetic resources in plant improvement programmes with an overall goal of improving food security and rural incomes in Pacific Island countries.

One of the main components of TaroGen is to provide farmers in Pacific Island countries with taro varieties that have improved resistance to taro leaf blight. To achieve this the project supports breeding programmes in PNG and Samoa based on durable resistance. Breeding of more resistant varieties together with the introduction of resistant varieties is the most sustainable approach to managing the disease. Improved taro with good resistance to taro leaf blight and quality is now available in Samoa and PNG. In Samoa, the project partners, USP and MAFFM, have been very successful in developing a strong partnership between growers, researchers and extension staff. This partnership is ensuring that improved taro is readily available to farmers. Growers in Samoa have access to improved taro from both the USP and MAFFM programmes after only two years of the project. This approach has created considerable interest in PNG where a similar farmer participatory approach is now under consideration. TaroGen plans to make these improved lines, and other resistant varieties, available to farmers in other Pacific Island countries.

Conclusions

The recent introduction of taro leaf blight into Samoa illustrates clearly the devastation that taro leaf blight can cause and highlights the vulnerability of isolated taro populations that for years evolved in the absence of the disease. Unfortunately, other countries in the Pacific are in a similar position to that of Samoa before the blight. In Fiji production is dominated by *Niue*, which was the dominant cultivar in Samoa at the time of the blight's arrival. This represents a situation of severe genetic vulnerability and a rerun of the Samoan epidemic could happen anytime. Fortunately, those countries most at risk now have the opportunity to benefit from the outputs from the TaroGen breeding programme. Improved taro with good resistance to taro leaf blight can provide these countries with the opportunity to minimise the impact of the disease.

Taro Leaf Blight Bibliography

1. Adams, E. (1999). Farmers use both chemical and cultural methods to control TLB. IRETA's South Pacific Agricultural News 16(1), 1,4,7.

> The major outcomes of a study conducted by M. W. K. Saurara in Upolu, Samoa, on farmers' attitudes to taro leaf blight control are reported. 30% of farmers now use a fungicide spray (Forschek, a phosphorous acid-based product) to control the disease, some at double the recommended rate to improve results. Cultural control, by removing infected leaves or parts of leaves, was generally not popular, as corm yields are reduced. This latter method is mainly used by small holders.

2. Adams, E. (1999). Taro cultivars tolerant to taro leaf blight. <u>IRETA's South Pacific</u> <u>Agricultural News</u> 16(2), 1,7.

The use of tolerant cultivars to overcome taro leaf blight in Samoa is discussed. Micronesian varieties Pwetepwet, Pastora, Toantal and the Philippine variety PSB-G2 have shown good tolerance to taro leaf blight in trials at Alafua. Consumers in Samoa, however, still prefer the taste and cooking quality of the local variety, Niue (now called Samoa).

Akus, W., Ososo, E., & Ivahupa, S. (1996). An overview of taro (*Colocasia esculenta*) research and development in Papua New Guinea. In <u>The Second Taro Symposium</u>. Proceedings of an International Meeting. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 114–120).

Taro leaf blight is identified as a very significant constraint to taro production in Papua New Guinea.

 Alam, S., Gogoi, R., Narzary, B. D., & Goswami, R. K. (1996). Screening of *Colocasia* germplasm of Northeast India against *Phytophthora* blight. In G. T. Kurup, M. S. Palaniswami, V. P. Potty, G. Padmaja, S. Kabeerathumma, & S. V. Pillai (Editors), <u>Tropical tuber crops: problems, prospects and future</u> <u>strategies.</u> (pp. 391–394). Lebanon, New Hampshire, USA: Science Publishers, Inc.

During 1991–92, 21 local *C. esculenta* cultivars from North-East India were screened under field conditions for resistance to naturally occurring *P. colocasiae* blight. In 1991 and 1992, the lowest disease severities were recorded in JCC25 at 3.3 and 3.6%, respectively, and the equivalent values for JCC24 were 4.0 and 4.5%. Both cultivars were determined to be resistant to blight. JCC23 had the highest disease severity (54–55%) and was highly susceptible. A negative correlation was recorded between disease severity and yield.

5. Amosa, F., & Wati, P. (1997). Effects of taro/maize intercropping systems on the incidence of and severity of taro leaf blight. In L. G. G. Yapa, & M. Umar

1995 Annual Research Report. The Institute for Research, Extension and Training in Agriculture (IRETA) and the School of Agriculture (SOA). (pp. 1–2). Apia, Samoa: University of the South Pacific, Alafua Campus.

Disease incidence and severity of taro leaf blight was lower in intercropped crops than those grown in monoculture.

 Anders, M. M. (1977). Root crop research in the Kingdom of Tonga. In <u>Regional</u> <u>Meeting on the Production of Root Crops.</u> Suva, Fiji, 24–29 October 1975. (pp. 200–202). Noumea, New Caledonia: South Pacific Commission. SPC Technical Paper No. 174.

Taro blight is reported causing extensive damage and high yield losses in Tonga.

7. Ann, P. J., Kao, C. W., & Ko, W. H. (1986). Mating-type distribution of *Phytophthora colocasiae* in Taiwan. <u>Mycopathologia</u> **93**(3), 193–194.

All 799 isolates from fields of *Colocasia esculenta* infected with leaf blight were similar in colony appearance and behaved as A2 mating type. These results suggest that the fungus is probably not indigenous to Taiwan.

 Anon. (1997). ADAP "success" against taro leaf blight. <u>SPC Agricultural News</u> 5(2), 16.

The spread of taro leaf blight, caused by *Phytophthora colocasiae*, in the Pacific region and the impact of the disease on taro growing is briefly described. The ADAP Taro Leaf Blight project initiated in 1994 is outlined. Important aspects of this project are the selection of resistant cultivars, tissue culture multiplication of some cultivars and examination of the acceptability of different cultivars for consumption in the Pacific.

- Anon. (1999). <u>Annual Report 1998/1999</u>, <u>AusAID/SPC Taro Genetic Resources:</u> <u>Conservation and Utilisation</u>, 26 pp. Noumea, New Caledonia: Secretariat of the Pacific Community.
- 10. Anon. (1995). <u>Control of taro leaf blight</u>, unnumbered. Apia, Samoa: Ministry of Agriculture, Fisheries, Forestry and Meterology. Agriculture Leaflet No. 27.
- 11. Anon. (1993). <u>Faama'i talo o le lega</u>, unnumbered. Apia, Western Samoa: University of the South Pacific. Agricultural Leaflet No. 23. In Samoan.
- 12. Anon. (1999). <u>In-situ</u> conservation of taro in Vanuatu: a feasibility study, 25 pp. Noumea, New Caledonia: Secretariat of the Pacific Community. AusAID/SPC Taro Genetic Resources: Conservation and Utilisation.
- 13. Anon. (1998). Is taro making a comeback? <u>Pacific Islands Nutrition (37</u>). First published in Talamua, The Samoa Monthly Magazine, February 1998.

- 14. Anon. (1966). <u>List of important diseases and pests on economic plants in Japan</u>. Tokyo, Japan: Nikon Tokushu Noyaku.
- Anon. (1943). Mycology. In <u>Report of the Department of Agriculture, Burma.</u> (pp. 4– 9).
- 16. Anon. (1953). New and interesting identifications. <u>Papua New Guinea Agricultural</u> <u>Gazette 8(1)</u>, 58.
- 17. Anon. (1953). New and interesting identifications. Plant pathogens: *Phytophthora* colocasiae. Papua New Guinea Agricultural Gazette 8(2), 72–73.

Fungi on rice and kenaf as well as *Phytophthora colocasiae* on taro are reported in the Solomon Islands.

Anon. (1978). Phytophthora colocasiae. In <u>Pest control in tropical root crops.</u> (pp. 177–179). London, UK: Centre for Overseas Pest Research.

The distribution, symptoms, development and spread, and cultural and chemical contol of taro leaf blight are described.

19. Anon. (1975). *Phytophthora colocasiae*—leaf blight of taro. In <u>Solomon Islands</u>, <u>Ministry of Agriculture and Rural Economy</u>. <u>Dala Experimental Station</u> <u>Annual Report 1974</u>. (pp. 6–20). Honiara, Solomon Islands.

Results of spacing, fungicide and leaf roguing trials are reported.

 Anon. (1997). Plant disease control, prevention and management. Taro leaf blight. In <u>Ministry of Agriculture, Forestry, Fisheries and Meteorology Annual Report</u> <u>July 1996–June 1997 (Research Division)</u> (pp. 41–45). Apia, Samoa.

Results of trials on Foschek formulation effects on taro leaf blight and taro growth, progeny evaluation trials for resistance to taro leaf blight, resistance of the PSB-G2, Toantal, Pastora and Pwetepwet varieties to taro leaf blight and the screening of exotic taro cultivars are reported.

 Anon. (1996). Plant diseases control, prevention and management. Taro leaf blight. In <u>Ministry of Agriculture</u>, Forestry, Fisheries and <u>Meteorology Annual</u> <u>Report July 1995–June 1996 (Research Division)</u> (pp. 35–38). Apia, Samoa.

Results of trials on Forschek formulation effects on taro leaf blight and taro growth, progeny evaluation trials for resistance to taro leaf blight, resistance of PSB-G2, Toantal, Pastora and Pwetepwet varieties to taro leaf blight and the screening of exotic cultivars are presented.

- 22. Anon. (1936). Plant pathology. Report of the Hawaii Experiment Station, 33-40.
- 23. Anon. (1938). Plant pathology. Report of the Hawaii Experiment Station, 35-45.

24. Anon. (1982). Plant pathology. In <u>Annual Report 1982. Solomon Islands</u> <u>Government, Ministry of Home Affairs and National Development,</u> <u>Agriculture Division, Research Department</u> (pp. 4–10). Honiara, Solomon Islands.

Results of research on the chemical control of taro leaf blight with metalaxyl and breeding for disease resistance are reported.

25. Anon. (1983). Plant pathology. In <u>Annual report 1983. Solomon Islands, Ministry of</u> Agriculture and Lands, Agriculture Division, Research Department (pp. 6–8).

> Included in this section of this annual report is a description of breeding work underway for taro leaf blight resistance.

- 26. Anon. (1950). Plant protection work in India during 1949–1950. <u>Plant Protection</u> <u>Bulletin, New Delhi, India 2</u>, 31–43.
- Anon. (1977). Post-harvest treatments of taro corms. In <u>Report of the Plant</u> <u>Pathologist for 1975 and 1976</u> (pp. 22–34). Dodo Creek, Solomon Islands: Solomon Islands, Ministry of Agriculture and Lands.

The use of chemicals and wrapping in polythene bags to control postharvest decay of taro corms, including that caused by *Phytophthora colocasiae*, is reported.

- Anon. (1998). <u>Proceedings of the Taro Breeding Workshop.</u> Suva, Fiji Islands, 26–28 August 1998. (21 pp.). Noumea, New Caledonia: Secretariat of the Pacific Community. AusAID/SPC Taro Genetic Resources: Conservation and Utilisation.
- 29. Anon. (1999). <u>Proceedings of the Taro Collecting Strategy for Pacific Islands</u> <u>Workshop.</u> Lae, Papua New Guinea, 7–11 December 1998. (21 pp.). Noumea, New Caledonia: Secretariat of the Pacific Community. AusAID/SPC Taro Genetic Resources: Conservation and Utilisation.
- 30. Anon. (1998). <u>Proceedings of the Taro Planning Workshop.</u> (20 pp.). Noumea, New Caledonia: AusAID/SPC Taro Genetic Resources: Conservation and Utilisation, Secretariat of the Pacific Community.
- 31. Anon. (1996). Root crops research and development. Taro. In <u>Ministry of</u> <u>Agriculture, Forestry, Fisheries and Meteorology Annual Report July 1996–</u> <u>June 1997 (Research Division)</u> (pp. 26–29). Apia, Samoa.

In this section results of trials on taro breeding for resistance to taro leaf blight and evaluation of varieties selected for resistance to taro leaf blight; growth characteristics, yield, level of adoption by farmers, and taste are reported. 32. Anon. (1996). Root crops research and development. Taro. In <u>Ministry of</u> <u>Agriculture, Forestry, Fisheries and Meteorology Annual Report July 1995–</u> <u>June 1996 (Research Division)</u> (pp. 20–22). Apia, Samoa.

> In this section of the report results of trials on taro breeding for resistance to taro leaf blight, evaluation of varieties selected for resistance to taro leaf blight, growth characteristics, yield, level of adoption by farmers and taste, and the effects of off-season planting on the incidence of taro leaf blight are reported.

- 33. Anon. (1999). <u>Taro Genetic Resources Committee Meeting.</u> Lae, Papua New Guinea, March 1999. (21 pp.). Noumea, New Caledonia: Secretariat of the Pacific Community. AusAID/SPC Taro Genetic Resources: Conservation and Utilisation.
- 34. Anon. (1999). <u>Taro Genetic Resources Committee Meeting.</u> Suva, Fiji Islands, October 1999. Noumea, New Caledonia: Secretariat of the Pacific Community. AusAID/SPC Taro Genetic Resources: Conservation and Utilisation.
- Anon. (1977). Taro pathology. In <u>Report of the plant pathologist for 1975 and 1976</u> (pp. 2–21). Dodo Creek, Solomon Islands: Solomon Islands, Ministry of Agriculture and Lands.

Research into taro leaf blight is reported, including yield loss, chemical control, storage decay studies. Infection of taro petioles by *Phytophthora colocasiae* after harvest was also investigated.

 Anon. (1993). <u>Togafitiga o le faamai lega o talo</u>, unnumbered. Apia, Western Samoa: Ministry of Agriculture, Fisheries, Forestry and Meteorology. Leaflet no. 26. In Samoan.

Information is given on the cultural and chemical control of taro leaf blight for farmers.

 Arentz, F. (1986). A key to *Phytophthora* species found in Papua New Guinea with notes on their distribution and morphology. <u>Papua New Guinea Journal of</u> <u>Agriculture, Forestry and Fisheries</u> 34(1-4), 9-18.

> A simple key is given for the most common *Phytophthora* species found in the soils of Papua New Guinea. Species listed are *P. cinnamomi*, *P. colocasiae*, *P. cryptogea*, *P. heveae*, *P. katsurae*, *P. megasperma* var. sojae, *P. nicotianae* var. nicotianae, *P. nicotianae* var. parasitica, *P. palmivora* and a *Phytophthora* species placed nearest *P. cryptogea*. Peronophythora litchii has been included because of its close resemblance to *Phytophthora*. All isolations held at Bulolo are listed, together with notes on their morphology.

38. Arura, M., & Thistleton, B. M. (1986). Crop protection problems in Papua New Guinea and the requirements for solving them. In <u>UNDP/FAO/GTZ/IRETA</u>

Regional Crop Protection Workshop. Apia, Western Samoa, 8–12 September 1986. (pp. 39–65). UNDP.

Taro leaf blight is considered in this paper on pests and diseases of various crops in Papua New Guinea. Future needs are identified as crop loss assessment studies and evaluation and economics of alternative (to metalaxyl) chemicals for control.

39. Ashok Aggarwal, Gurinderjit Kaur, & Mehrotra, R. S. (1987). Activity of some antibiotics against *Phytophthora colocasiae* incitant of leaf blight of *Colocasia esculenta*. Journal of the Indian Botanical Society **66**(3–4), 301–304.

When 8 antibiotics were tested against the pathogen, ledermycin proved the most inhibitive *in vivo* and *in vitro*, followed by terramycin [oxytetracycline], resteclin (tetracycline hydrochloride) and agrimycin-100.

40. Ashok Aggarwal, Gurinderjit Kaur, & Mehrotra, R. S. (1986). Effect of certain metabolic inhibitors on growth and respiration of *Phytophthora colocasiae* Racib. Indian Botanical Reporter 5(2), 119–122.

In laboratory tests sodium azide, mercuric chloride, sodium fluoroacetate, sodium malonate, methylene blue and sodium fluoride inhibited respiration and mycelial growth of *P. colocasiae* on *Colocasia esculenta*.

41. Ashok Aggarwal, Kamlesh, & Mehrotra, R. S. (1993). Control of taro blight and corm rot caused by *Phytophthora colocasiae* homeopathic drugs. <u>Plant</u> <u>Disease Research</u> **8**(2), 94–101.

The effect of 4 homeopathic drugs (Kali iodide (potassium iodide), Arsenicum album (arsenic oxide), Blatta orientalis (an extract of cockroach) and extract of Thuja occidentalis) on the mycelial growth, sporangial production, pectolytic and cellulolytic enzyme production and control of P. colocasiae on taro (Colocasia esculenta) was investigated. All 4 drugs inhibited mycelial growth, but the percentage inhibition varied with different drug potencies. Max. inhibition (50-90%) was obtained by Kali iodide and Arsenicum album at all 3 potencies (3, 30 and 200) and by Blatta orientalis and T. occidentalis at potencies of 30 and 200. The effect on sporulation also varied with potency, with max. inhibition caused by each drug at a potency of 200, and by a potency of 30 for Arsenicum album. Kali iodide resulted in the greatest decrease in pectolytic and celluloytic activity, followed by Arsenicum, Thuja and Blatta. The occurrence of disease was reduced by 45-59% compared with an untreated control when taro leaves were treated with Kali iodide or Arsenicum album (both at 200 potencies) prior to inoculation with P. colocasiae.

42. Ashok Aggarwal, & Mehrotra, R. S. (1987). Control of *Phytophthora* leaf blight of taro (*Colocasia esculenta*) by fungicides and roguing. <u>Phytoparasitica</u> 15(5), 299–305.

In *in vitro* tests Demosan 65W (chloroneb) was the most effective of 6 fungicides in inhibiting mycelial growth of *P. colocasiae*, followed by Difolatan 80W (captafol), Fytolan (copper oxychloride), Apron 35F (metalaxyl), Topsin-M 50W (thiophanate-methyl) and Dithane Z-78 75W (zineb). In field trials excellent control was obtained with chloroneb and captafol, good control with metalaxyl, fair control with copper oxychloride and poor control with thiophanate-methyl and zineb. Roguing of infected leaves did not eradicate the pathogen but may delay the start of epiphytotics.

Ashok Aggarwal, & Mehrotra, R. S. (1988). Effect of antibiotics on growth, enzyme activity and respiration of *Phytophthora colocasiae*. <u>Plant Disease Research</u> 3(1), 37-42.

Details are given of the *in vitro* effects of 7 antibiotics on this pathogen of *Colocasia esculenta*. Ledermycin had the greatest effect on respiration and growth, while all the antibiotics had significant effects on the activities of transeliminases, hydrolases and cellulases.

44. Ashok Aggarwal, & Mehrotra, R. S. (1986). The effect of certain carbohydrates and amino acids on growth and respiration of *Phytophthora colocasiae*. <u>Plant</u> <u>Disease Research</u> 1(1-2), 11-15.

The effects of 9 carbohydrates and 20 amino acids on respiration and mycelial growth of an isolate from *Colocasia esculenta* are tabulated and the results discussed.

45. Ashok Aggarwal, & Mehrotra, R. S. (1988). Effect of systemic and non-systemic fungicides on mycelial growth and respiration of *Phytophthora colocasiae*. Indian Phytopathology **41**(4), 590–593.

The effect of 11 fungicides (Ridomil-25 WP (metalaxyl), Apron 350 FW (metalaxyl), Topsin-M (thiophanate-methyl), Cuman L (ziram), Dithane-M 45 (mancozeb), Dithane-Z 78 (zineb), Difolatan-80-W (captafol), Blitox (copper oxychloride), Benlate (benomyl), Bavistin (carbendazim) and Fytolan (copper oxychloride)) at 5, 50 and 500 p.p.m. on *P. colocasiae* mycelial growth and respiration rate was investigated. All the fungicides inhibited the fungus. The results suggest a correlation between mycelial growth inhibition and respiration rate inhibition. All the fungicides which inhibited mycelial growth also significantly inhibited respiration rate. None of the fungicides tested stimulated respiration or mycelial growth.

46. Ashok Aggarwal, & Mehrotra, R. S. (1988). Effects of various fungicides on mycelial growth, sporangial production, enzyme activity and control of *Phytophthora* leaf blight of *Colocasia esculenta* L. <u>Acta Phytopathologica Et Entomologica</u> Hungarica **23**(3–4), 401–414.

Studies on the effects of 23 fungicides on *P. colocasiae* revealed that Apron 350 FW (metalaxyl), Blitox (copper oxychloride), Blimex, Cuman-L (ziram), Demosan 65W (chloroneb), Dexon (fenaminosulf), Difolatan 80 W

(captafol), Fytolan, Hexaferb, Kitazin (S-benzyl O,O-diethyl phosphorothioate), Milton, Ridomil 25 WP (metalaxyl) and Syllit (dodine) all gave 100% inhibition at different concentrations. All fungicides had some effect on sporangial formation. The effects of 8 fungicides on pectolytic and cellulolytic enzyme activity were also observed. All inhibited the enzymes to some degree with metalaxyl (as Ridomil 25 WP followed by Apron 350 FW) being the most effective. It was also the most effective at 200 parts per million of 8 fungicides tested in field conditions.

47. Ashok Aggarwal, & Mehrotra, R. S. (1986). Pectolytic and cellulolytic enzymes produced by *Phytophthora colocasiae*, *P. parasitica* var. *piperina in vitro and in vivo*. Indian Journal of Plant Pathology **4**(1), 74–77.

P. colocasiae and *P. parasitica* var. *piperina* [*P. nicotianae* var. *parasitica*] produced pectolytic (PME, PG, PMTE and PMG) and cellulolytic (Cx) enzymes under conditions of different C sources in liquid medium and detached leaves of *Colocasia esculenta* and *Piper betle*. Pectin methylesterase (PME) activity was not detected in the isolates *in vivo*. Pectolytic enzymes produced by these fungi were of a constitutive rather than adaptive nature. These results indicate that PG, PMG and PMTE enzymes play a decisive role in the pathogenesis of *P. colocasiae* on *C. esculenta* and *P. nicotianae* var. *parasitica* on *Piper betle*.

48. Ashok Aggarwal, & Mehrotra, R. S. (1987). The role of phenolic substances in leaf blight of *Colocasia esculenta* caused by *Phytophthora colocasiae*. Journal of the Indian Botanical Society **66**(3-4), 272-274.

Alterations in phenolic compounds in *Colocasia* due to *P. colocasiae* infection are reported. Total phenols, orthodihydric phenols and flavonols markedly increased as a result of infection. Eleven phenols were detected in the infected plants as against 7 in healthy plants. Each stage of infection was characterized by an addition of a new phenol (4 in all, U1–U4). A close correlation existed between the phenolic acids produced by the pathogen *in vitro* and those in the infected plant. The implication of the occurrence of new phenols and further accumulation of the already existing phenols, as a result of infection, on disease development is discussed.

49. Ashok Aggarwal, & Mehrotra, R. S. (1988). Studies on transeliminases in *Phytophthora colocasiae*: inhibitory effects of plant growth regulators, phenolics and fungicides. <u>Indian Journal of Plant Pathology</u> 6(2), 158–163.

All the growth regulators tested (IAA, IBA, GA, K, 2,3,4-T) and 10 and 100 p.p.m. checked the production of polygalacturonate transeliminase and pectin methyl transeliminase by this pathogen of *Colocasia esculenta*, but none could completely prevent it. Ferulic acid, m-hydroxybenzaldehyde, phloroglucinol and vanillin at 10, 50 and 100 p.p.m. were also inhibitory, as were all 6 fungicides tested, especially Apron 350 FW (metalaxyl), Ridomil 25 WP (metalaxyl) and Topsin M (thiophanate-methyl).

50. Ashok Aggarwal, Narula, K. L., Gurinderjit Kaur, & Mehrotra, R. S. (1990). *Phytophthora colocasiae* Racib.—its taxonomy, physiology, pathology and control. In S. K. Hasija, & K. S. Bilgrami (Editors), <u>Perspectives in</u> <u>Mycological Research. Volume 2.</u> (pp. 105–134). New Delhi, India.: Today & Tomorrow's Printers & Publishers. International Bioscience Series. Volume XV.

The taxonomy, physiology, pathology and control of *Phytophthora* colocasiae, the cause of leaf and corm blight of *Colocasia esculenta*, are reviewed.

51. Ashok Bhattacharyya, & Saikia, U. N. (1996). Fungicidal management of leaf blight of *Colocasia*. International Journal of Tropical Agriculture 14(1-4), 231-233.

Field experiments conducted during 1990–91 at Jorhat, Assam, India, to study the effect of fungicides in controlling leaf blight caused by *Phytophthora colocasiae* in *Colocasia esculenta* revealed that 0.2% metalaxyl and mancozeb (as Ridomil MZ-72) was the most effective treatment, followed by 0.2% captafol (as Foltaf), Bordeaux mixture (1% copper sulfate and lime) and 0.25% mancozeb (as Foltaf). A significant increase in yield was recorded for all treatments over the untreated control. Bordeaux mixture gave the highest incremental cost-benefit ratio over the control (1:30.3).

- 52. Barrau, J. (1954). Decline in taro disease. <u>South Pacific Commission Quarterly</u> <u>Bulletin 4(2), 24.</u>
- 53. Barrau, J. (1958). Subsistence agriculture in Melanesia. <u>Bulletin, Bernie P. Bishop</u> <u>Museum, Hawaii (</u>No. 219).
- 54. Barrau, J. (1961). Subsistence agriculture in Polynesia and Micronesia. <u>Bulletin</u>, <u>Bernie P. Bishop Museum, Hawaii (No. 223)</u>.
- 55. Barrau, J. (1955). Taro disease in British Solomons. <u>South Pacific Commission</u> <u>Quarterly Bulletin 5(1)</u>.
- Bergquist, R. R. (1973). Effect of fungicide rate, spray interval and timing of spray application in relation to control of *Phytophthora* leaf blight of taro. <u>Phytophthora Newsletter (1)</u>, 6–7.
- 57. Bergquist, R. R. (1974). Effect of fungicide rate, spray interval, timing of spray application, and precipitation in relation to control of *Phytophthora* leaf blight of taro. <u>Annals of Botany</u> **38**(154), 213–221.

In trials at 2 sites on the windward side of Kauai, *Colocasia esculenta* was sprayed with mancozeb at 4.48, 2.24 or 1.12 kg/ha at intervals of 5, 7, 10 or 14 days. At the drier of the 2 sites rate of fungicide had no effect, while at the wetter site (0.25 cm/week more rainfall) the highest rate of fungicide was more effective than the lowest. Spraying every 5 days was significantly more effective than spraying every 14 days. Applications of fungicide at 7-day

intervals when weekly accumulated rainfall exceeded 1 cm and/or when lesion counts exceeded 1/plant, gave substantial disease control. Yields at the wetter site were 8.66 and 11.19 kg primary corms/plant with no fungicide and with 1.12 kg mancozeb/ha, respectively, and significantly higher (14.26 and 16.71 kg/plant) at the 2 highest fungicide rates. Respective yields of secondary corms were 7.85, 7.08, 8.65 and 10.78 kg/plant.

58. Bergquist, R. R. (1972). Efficacy of fungicides for control of *Phytophthora* leaf blight of taro. <u>Annals of Botany</u> **36**(145), 281–287.

Results of laboratory, glasshouse and outdoor trials are reported, in which Polyram (metiram) and Dithane M-45 (mancozeb) gave very good control of *Phytophthora colocasiae* on *Colocasia esculenta* and were the least phytotoxic.

- 59. Bernardo, E. N. (1981). Pest resistance in plants with emphasis on root crops. In Southeast Asian and the Pacific Training Course on Root and Tuber Crops Germplasm Evaluation and Utilization (p. 251). Leyte, Philippines: College of Agriculture.
- Bhatt, D. D. (1966). Preliminary list of plant diseases recorded in the Katmandu Valley. <u>Journal of Science of the Tri-Chandra College Science Association</u> 2(1), 13-20.
- Bourke, R. M. (1982). Agronomic field trials on food crops in Papua New Guinea 1928–1978. <u>Technical Report DPI 82/3</u>. Department of Primary Industry, Papua New Guinea.

Included in this list of agronomic field trials carried out in Papua New Guinea are fungicide and cultivar trials on taro for blight control.

62. Bourke, R. M. (1982). Root crops in Papua New Guinea. In <u>Proceedings of the Second Papua New Guinea Food Crops Conference</u>. Port Moresby, Papua New Guinea, 14–18 July, 1980. (pp. 51–63). Port Morseby, Papua New Guinea: Department of Primary Industry.

The widespread occurrence of taro leaf blight in Papua New Guinea is noted.

63. Bourke, R. M. (1982). Root crops in Papua New Guinea. In <u>5th International</u> <u>Symposium on Tropical Root and Tuber Crops.</u> Philippines, 17–21 September 1979. (pp. 121–133). Los Banos, Philippines: Philippine Council for Agriculture and Resources Research.

> The widespread occurrence of taro leaf blight in the lowlands is noted. Agronomic work undertaken is tabulated.

64. Brooks, F. (2000). <u>List of plant diseases in American Samoa</u>, 35 pp. American Samoa: American Samoa Community College Land Grant Program. Land Grant Technical Report No. 31.

This publication includes a brief description of the taro leaf blight epidemic in American Samoa in 1993–94.

65. Brooks, F. (2000). <u>Pests and diseases of American Samoa: taro in American Samoa</u>, 2 pp. American Samoa: Agriculture, Human and Natural Resources, American Samoa Community College Land Grant Program. American Samoa Community College Land Grant Program Leaflet No. 2.

The impact of taro leaf blight on the American Samoan economy is described along with an overview of taro pests and diseases.

- 66. Butler, E. J., & Bisby, G. R. (1931). <u>The fungi of India</u>, 237 pp. Imperial Council of Agricultural Research and Science Monograph No. 1.
- 67. Butler, E. J., Bisby, G. R., & Vasudeva, R. S. (1960). <u>The fungi of India</u>, 552 pp. India: Indian Council of Agricultural Research.
- 68. Butler, E. J., & Kulkarni, G. S. (1913). Colocasia blight caused by *Phytophthora* colocasiae Rac. <u>Memoirs of the Department of Agriculture in India, Botanic</u> <u>Series</u> 5(4), 233–261.
- 69. CAB INTERNATIONAL. (2000). <u>Crop Protection Compendium Global Module</u>. Wallingford, UK: CAB INTERNATIONAL.

This CD contains updated datasheets on taro and *Phytophthora colocasiae*, with information on biology, control and geographic distribution.

70. CAB INTERNATIONAL. (1998). <u>Crop Protection Compendium Module 1</u>. Wallingford, UK: CAB INTERNATIONAL.

This CD contains datasheets on taro and *Phytophthora colocasiae*, with information on biology, control and geographic distribution.

71. CAB INTERNATIONAL. (1997). Distribution maps of plant diseases. (April-October), unnumbered.

This set includes a map for *Phytophthora colocasiae* (Map no. 466). This is the 3rd edition of this map for this pathogen.

72. Cable, W. J. (1977). Report of a field study on taro research in the South Pacific. In <u>Regional Meeting on the Production of Root Crops.</u> Suva, Fiji, 24–29 October 1975. (pp. 94–99). Noumea, New Caledonia: South Pacific Commission. SPC Technical Document No. 174.

In this review, taro leaf blight in the region is discussed. Control measures are outlined.

73. Carpenter, C. W. (1920). Report of the plant pathologist. <u>Hawaii Agricultural</u> <u>Experiment Station Report 1919</u> (pp. 49–54). Hawaii, USA.

- Castellani, E. (1939). Considerazioni fitopatologiche sull'Africa orientale italiana. [Phytopathological studies in Italian East Africa]. <u>Agricoltura Colon</u>, 486–492.
- 75. Chan, E. (1996). <u>The impact of taro leaf blight on the Samoan economy and agricultural activity</u>, 8 pp. Western Samoa Farming Systems Project, Ministry of Agriculture, Forestry, Fisheries and Meteorology, Unpublished report.

The outbreak of taro leaf blight in Samoa is discussed. The government reaction to the disease, the effect on the pattern of food production and consumption and the effect on Samoa's economy are considered.

- 76. Chan, E. (1997). <u>A summary of trials carried out in the taro leaf blight control program 1996–1997</u>, 33 pp. Western Samoa Farming Systems Project, Ministry of Agriculture, Forestry, Fisheries and Meteorology, Unpublished report.
- 77. Chan, E., Milne, M., & Fleming, E. (1998). The causes and consequences of taro leaf blight in Samoa and the implications for trade patterns in taro in the South Pacific region. <u>Tropical Agriculture (Trinidad)</u> 75(1), 93–98.

The impact of taro leaf blight on taro production in Samoa after the outbreak of the disease in 1993 and steps taken by the Ministry of Agriculture, Fisheries, Forestry and Meteorology, including input subsidies, development of resistant varieties and food crop diversification are discussed. The implications of taro leaf blight for the Samoan economy and for taro trade and domestic prices in the Pacific region are also considered.

 Chandra, S. (1984). Conclusions and recommendations for research and development in edible aroids. In S. Chandra (Editor), <u>Edible Aroids</u> (pp. 237–242). Oxford, UK: Clarendon Press.

> The main areas of needed future research and development for edible aroids are identified as: agronomy and production systems; germplasm and breeding; diseases and pests; and storage, utilization and marketing. *Phytophthora colocasiae* is identified as an important disease and the importance of collecting resistant germplasm is stressed.

 Chaudhary, R. G., & Mathura Rai. (1988). A note on the varietal screening of taro to *Phytophthora* blight. <u>Haryana Journal of Horticultural Sciences</u> 17(3–4), 278–279.

In tests carried out in Arunachal Pradesh, India, 23 varieties of taro (*Colocasia esculenta*) were screened for resistance to *P. colocasiae*. Results showed that 5 varieties were immune and 1 was moderately resistant.

 Cho, J. J., & Michelmore, R. W. (1996). Genetic analysis of *Phytophthora* leaf blight resistance in taro using molecular markers. In <u>The Second Taro Symposium</u>. <u>Proceedings of an International Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 58–61).

Molecular techniques to accelerate the breeding of taro with resistance to blight are described. The technology can be used to tag genes associated with blight resistance. Breeding strategies using RAPD markers and PCR are described.

- 81. Chowdhury, S. (1944). Some fungi from Assam, I. <u>Indian Journal of Agricultural</u> <u>Sciences</u>, 230–233.
- 82. Cifferi, R. (1955). Preliminary list of noteworthy diseases of cultivated plants in continental eastern China. <u>Plant Disease Reporter</u> **39**(10), 785–792.
- 83. Clarke, W. C. (1973). A change of subsistence staple in prehistoric New Guinea. International Symposium on Tropical Root Crops. Ibadan, Nigeria, 1973.
- 84. Clarkson, D. (1981). Taro blight. <u>Harvest (Papua New Guinea)</u> 7(2), 87. Plant pathology note: no. 9.
- Clarkson, D., & Moles, D. J. (1984). Effects of four fungicides on the growth of *Phytophthora colocasiae*. <u>Papua New Guinea Journal of Agriculture</u>, Forestry <u>and Fisheries</u> 33(1-2), 51-53.

The efficiency of four fungicides in controlling *Phytophthora colocasiae* was investigated *in vitro* and *in vivo*. Du-ter and Ridomil were gave excellent control of fungal development but the phytotoxicity of Du-ter rendered it unsuitable for use on taro. Cuprox and Aliette were found to be less effective.

 Cole, J. S. (1996). Isolation of *Phytophthora colocasiae* into pure culture. <u>Taro Leaf</u> <u>Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 83–85). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The use of selective medium, selecting agents (Pimaricin, Penicillin-G and PCNB (Pentachloronitrobenzene)), isolation of the pathogen from plant material and baiting techniques for *Phytophthora colocasiae* are described.

87. Connell, J. (1978). The death of taro: local response to a change of subsistence crops in the Northern Solomon Islands. <u>Mankind (No. 11)</u>, 445–452.

The outbreak of taro leaf blight on Bougainville after the 2nd World War, its spread in the Solomon Islands and the local response to the disease are discussed.

 Coursey, D. G., & Booth, R. H. (1977). Contributions of post-harvest biotechnology to trade in tropical crops. In <u>Regional Meeting on the Production of Root</u> <u>Crops.</u> Suva, Fiji, 24–29 October 1975. (pp. 100–105). Noumea, New Caledonia: South Pacific Commission. SPC Technical Paper No. 174. Although the storage of taro is minimal, the role of *Phytophthora colocasiae* in postharvest decay of taro is discussed.

 Coursey, D. G., Jackson, G. V. H., & Pena, R. S. d. l. (1979). Working group report: handling and storage. In D. L. Plucknett (Editor), <u>Small-scale Processing and</u> <u>Storage of Tropical Root Crops</u> (pp. 15–25). Boulder, Colorado, USA: Westview Press. Westview Tropical Agriculture Series, No. 1.

In this chapter, preharvest (removal of infected leaves 2 weeks before harvest) and packaging and handling techniques to reduce damage caused by *Phytophthora colocasiae*, and other diseases are discussed.

90. Cox, P. G. (1986). <u>Taro leaf blight</u>, 15 pp. Lae, Papua New Guinea: Department of Agriculture and Livestock, Bubia Agricultural Research Centre. Seminar paper presented at Bubia Agricultural Research Centre, Lae, Papua New Guinea, 5 November 1986.

Research on taro leaf blight at DPI Crops Research is outlined. Experiments on chemical control using metalaxyl, the effect of taro leaf blight on leaf number, the effect of dose rate on the chemical control of taro leaf blight, the effect of application frequency on chemical control and the effect of leaf number on varietal reaction to taro leaf blight are described.

91. Cox, P. G., & Kasimani, C. (1988). Control of taro leaf blight using metalaxyl. <u>Tropical Pest Management 34(1), 81-84</u>.

Metalaxyl with copper (as 0.3% Ridomil plus 72 w.p.) gives excellent control of taro (*Colocasia esculenta*) leaf blight (*Phytophthora colocasiae*) when applied at 2-week intervals using a knapsack sprayer. It is concluded that this is useful for taro research and suggests a way to control the disease in subsistence food gardens in Papua New Guinea, which may be preferable both to the development and introduction of elite cultivars and to attempts at cultural control.

92. Cox, P. G., & Kasimani, C. (1990). Control of taro leaf blight using metalaxyl: effect of dose rate and application frequency. <u>Papua New Guinea Journal of</u> <u>Agriculture, Forestry and Fisheries</u> **35**(1-4), 49-55.

Metalaxyl (as Ridomil plus 72 WP) was applied to taro (*Colocasia esculenta*) cultivar K264 using a knapsack sprayer to control leaf blight (*Phytophthora colocasiae*). The efficacy of 3 dose rates (0.1, 0.2 and 0.3%) applied at 2-week intervals (experiment 1) and 3 application frequencies (2, 5 and 7 times) using 0.3% metalaxyl (experiment 2) was investigated. In experiment 1, analysis of variance showed a significant increase in corm weight in all plots treated with metalaxyl (P<0.001) but no difference in yield between treatments. In the second experiment, treated plots again showed a significant increase in corm yield: 5 applications of metalaxyl at 3-week intervals resulted in an increase of almost 50%.

93. Cox, P. G., & Kasimani, C. (1987). Effect of blight on leaf area duration, leaf number and marginal unit leaf rate of taro, 15 pp. Kerevat, Papua New Guinea: Department of Agriculture and Livestock, Lowlands Agricultural Experiment Station.

> Leaf blight substantially reduces both the leaf area duration and the marginal unit leaf rate of taro. Leaf number is the principal component of leaf area duration affected by blight. Use of effective leaf area does not correct for differences in the unit leaf rate. A model is presented which explains this in terms of the division of labour along the plant axis. The implications of variation in the rate of yield accumulation for the control of taro leaf blight in farmers' gardens are discussed. Two disease indices are proposed: (1) percentage loss of leaf number (for the comparison of different varieties); and (2) percentage of growing period affected by blight (for the comparison of different disease progress curves).

94. Cox, P. G., & Kasimani, C. (1990). Effect of taro leaf blight on leaf number. <u>Papua</u> <u>New Guinea Journal of Agriculture, Forestry and Fisheries</u> **35**(1-4), 43-48.

Setts of taro (*Colocasia esculenta*) cultivar K264 were planted in a randomized complete block design with 5 replicates of 4 treatments: plants inoculated with *Phytophthora colocasiae* at 78, 105 or 133 d after planting or uninoculated in control plots. The number of leaves declined following inoculation, reaching an equilibrium after 3–6 weeks. Leaf number was then similar in all inoculated plants. The number of older leaves was reduced by the blight, but the rate of leaf production was unaffected. Yield from all inoculated plants was significantly reduced (P<0.01) but there was no significant difference between inoculated plots.

95. Cox, P. G., & Kasimani, C. (1987). Effect on leaf number on varietal reaction to taro leaf blight, 12 pp. Lae, Papua New Guinea: Department of Agriculture and Livestock, Bubia Agricultural Research Centre.

> Leaf blight reduces the cumulative leaf number of taro. A plant with more leaves suffers a greater proportional loss of leaf number in the presence of blight, and a correspondingly greater proportional loss in mean corm weight. It is concluded that this has implications for the design of improved taro cultivars.

96. Das, S. R. (1997). Field efficacy of fungicides for the control of leaf blight disease of taro. Journal of Mycology and Plant Pathology 27(3), 337–338.

Field experiments were conducted at the Orissa University of Agriculture and Technology, Bhubaneswar, Orissa, India, for the 3 successive kharif seasons of 1991–93 to test the efficacy of copper oxychloride, mancozeb, metalaxyl, captafol, ziram and Bordeaux mixture against leaf blight disease (*Phytophthora colocasiae*) of taro (*Colocasia esculenta* var. *antiquorum*). The local variety, Telia, was used as a test crop. Fungicides were sprayed when disease symptoms first appeared and repeated twice at 14-day intervals.

Leaf blight severity and marketable corm yield were recorded for each treatment. All fungicides significantly reduced leaf blight intensity and increased corm yields in comparison with the untreated control. Metalaxyl + mancozeb gave significantly more effective disease control than the other fungicides followed by mancozeb and Bordeaux mixture. Mancozeb recorded the highest corm yield (95.6 q/ha). It is concluded that leaf blight of taro can be effectively managed by giving 3 sprays of metalaxyl + mancozeb or mancozeb alone starting at the onset of the disease and repeating at fortnightly intervals.

- 97. Dayrit, R., & Phillip, J. (1987). <u>Comparative performance of eight dryland taro</u> <u>varieties on Pohnpei, Federated States of Micronesia</u>, 4 pp. Kolonia, Federated States of Micronesia: AES/CTAS.
- Delp, C., Hunter, D. G., & Pouono, K. (1999). USP Taro Breeders Club: an innovative and participatory approach to improving taro in Samoa. <u>IRETA's</u> <u>South Pacific Agricultural News</u>.

The Taro Breeders Club initiated at the University of the South Pacific in Samoa in 1999 is described.

 Deshmukh, M. J., & Chhibber, K. N. (1960). Field resistance to blight *Phytophthora* colocasiae Rac. in Colocasia esculenta Schott. <u>Current Science (Bangalore)</u> 29(8), 320-321.

> The progress of taro leaf blight in the field resistant cultivar, Ahina, and susceptible Patna Local was compared. Fewer sporangia of the fungus were produced on the resistant cultivar and the disease progressed at a much slower rate. The reaction on the resistant cultivar was much more severe. It is concluded that the observed field resistance is a weak hypersensitive reaction.

 Dey, T. K., Ali, M. S., Bhuiyan, M. K. R., & Siddique, A. M. (1993). Screening of *Colocasia esculenta* (L.) Schott lines to leaf blight. <u>Journal of Root Crops</u> 19(1), 62-65.

A total of 38 *C. esculenta* lines were evaluated for susceptibility to leaf blight, caused by *Phytophthora colocasiae*.

101. Dey, T. K., Ali, M. S., Chowdhury, N., & Siddique, M. A. (1991). Vegetative growth and sporangial production in *Phytophthora colocasiae* Racib. <u>Journal of Root</u> <u>Crops</u> 17(2), 142–146.

The influence of agar media, temperature and liquid substrates on vegetative growth and sporangial production of *P. colocasiae* was investigated. Oat meal agar with yeast extract and V-8 juice agar gave maximum vegetative growth and mycelial density. Highest vegetative growth and mycelial density was recorded at 25 + 1 C. Rain water was the best liquid substrate for sporangial production followed by charcoal water at 20 + 1 C.

102. Dingley, J. M., Fullerton, R. A., & McKenzie, E. H. C. (1981). Records of fungi, bacteria, algae and angiosperms pathogenic on plants in Cook Islands, Fiji, Kiribati, Niue, Tonga, Tuvalu, and Western Samoa. SPEC/UNDP/FAO Survey of Agricultural Pests and Diseases, Technical Report No. 2.

The distribution of *Phytophthora colocasiae* in the Pacific region is given as Solomon Islands, Papua New Guinea and Hawaii (page 136). Reports for Fiji and Western Samoa are cited, but it is concluded that these reports need confirmation.

- 103. Erari, D. K. (1994). Penggunaan beberapa mikroorganisme saprofit dan fungisida Metalaxyl untuk pengendalian penyakit hawar daun talas (*Phytophthora colocasiae*). [The use of several saprophytic microorganisms and metalaxyl fungicide to control taro leaf blight (*Phytophthora colocasiae*)]. Unpublished report of the Faculty of Postgraduate Studies, Bogor Agricultural Institute.
- 104. Erari, D. K. (1985). Penilaian ketahanan beberapa klon talas asal Manokwari terhadap serangan penyakit bercak daun talas (*Phytophthora colocasiae*). [The evaluation of several taro clones from Manokwari to taro leaf blight (*Phytophthora colocasiae*)]. Unpublished report of the Faculty of Agriculture UNCEN, Manokwarai.
- 105. Erwin, D. C. (1983). Variability within and among species of *Phytophthora*. D. C. Erwin, S. Bartnicki-Garcia, & P. H. Tsao (Editors), *Phytophthora*: its Biology, Taxonomy, Ecology, and Pathology (pp. 149–165). St Paul, Minnesota, USA: APS Press (American Phytopathological Society).

Phytophthora colocasiae is considered in this discussion on variability within and among species of *Phytophthora*.

106. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora colocasiae. <u>Phytophthora</u> Diseases Worldwide (pp. 299–300). USA: APS Press (American Phytopathological Society).

The fungus is described and its taxonomy discussed.

- 107. Esgrerra, N. M. (1981). Status of integrated pest management on root crops in the Philippines. In <u>Southeast Asian and the Pacific Training Course on Root and</u> <u>Tuber Crops Germplasm Evaluation and Utilization</u> (pp. 264–312). Leyte, Philippines: Visayos State College of Agriculture.
- 108. Ezumah, H. C., & Plucknett, D. L. (1981). Cultural studies on taro, *Colocasia* esculenta (L.) Schott. Journal of Root Crops 7, 41-52.
- 109. FAO. (1998). Global Plant and Pest Information System.

Also available via the Internet at http://pppis.fao.org. This CD is a snap shot of the database taken in July 1998. Data is updated regularly in the internet version and CDs pressed periodically. The database contains information on *Phytophthora colocasiae* and the text of a thesis on 'Phenology and

epidemiology of *Phytophthora colocasiae* Racib. on taro in the East West Province, Papua New Guinea' by Putter, C. A. J.

- 110. FAO. (1963). Host list of fungi etc. recorded in the South East Asia and Pacific region. Colocasia antiquorum—taro; Dioscorea spp.—yam; Manihot utilissima—cassava. <u>Technical Document FAO Plant Protection Commission</u>
- 111. FAO. (1963). Quarterly report for October-December 1962 of the Plant Protection <u>Committee for the South East Asia and Pacific Region</u>. Bangkok, Thailand: FAO.
- 112. Ferentinos, L. (1993). <u>Proceedings of the Sustainable Taro Culture for the Pacific Conference</u>. University of Hawaii, 24–25 September 1992. (140 pp.). Honolulu, Hawaii: Hawaii Institute of Tropical Agriculture and Human Resources. HITAHR Research and Extension Series No. 140.

Several papers concern taro leaf blight and have been noticed separately in this bibliography.

- Firman, I. D. (1975). *Phytophthora* and *Pythium* species and the diseases caused by them in the area of the South Pacific Commission. <u>Fiji Agricultural Journal</u> 37, 1-8.
- 114. Firman, I. D. (1982). Review of major diseases of crops in the South Pacific. In <u>Sub-Regional Training Course on Methods of Controlling Diseases</u>, Insects and <u>Pests of Plants in the South Pacific</u> (pp. 39–46). Tonga: GTZ/USAID/CICP/MAFF.
- 115. Fonoti, P., Hunter, D. G., & Delp, C. (2001). Improving traditional farming systems through plant breeding. In <u>Proceedings of the Regional Workshop on the</u> <u>Improvement and Development of Traditional Farming Systems for South</u> <u>Pacific Countries.</u> IRETA, University of the South Pacific, Alafua Campus, Samoa, 18–22 October 1999.
- 116. Fonoti, P., Hunter, D. G., Singh, D., Okpul, T., Delp, C., Pouono, K., & Sivan, P. (1999). Breeding for resistance to taro leaf blight in the South Pacific. In <u>Proceedings of the 12th Biennial Australasian Plant Pathology Society</u> <u>Conference.</u> Canberra, Australia, 27–30 September 1999. (p. 248).
- 117. Fullerton, B., Hunter, D. G., & Jackson, G. (1998). Phytophthora colocasiae: the pathogen and its epidemiology. In <u>Proceedings of the Taro Breeding</u> <u>Workshop.</u> Suva, Fiji Islands, 26–28 August 1988. (pp. 8–9). Noumea, New Caledonia: AusAID/SPC Taro Genetic Resources: Conservation and Utilisation, Secretariat of the Pacific Community.
- 118. Fullerton, R. A. (1995). <u>SPC/DAL/Unitech Taro Seminar II, Lae, Papua New Guinea.</u> Report to the New Zealand Ministry of Foreign Affairs and Trade, 55 pp.

Auckland, New Zealand: HortResearch. HortResearch Client Report No. 95/239.

In this report the Taro Seminar II meeting held in Lae, 26–30 June 1995 is analysed. The major focus on taro leaf blight is noted and details of work in progress on chemical control and breeding for resistance are summarised. Recommendations included the need for a continuation of the breeding programme, sourcing resistant material, exposure of resistant lines to other strains of the pathogen and conservation of genetic resources. The paper 'Breeding for resistance to taro leaf blight—a pathologist's perspective' presented by R.A. Fullerton at the meeting is appended.

119. Fullerton, R. A., Tyson, J., Hunter, D. G., & Fonoti, P. (2000). Plant Pathology Progress Report. In <u>Taro Genetic Resources Committee Meeting</u>. Lae, Papua New Guinea, 18 April 2000.

The development of laboratory and field screening techniques for taro blight are described. Additional information is provided on determination of P. *colocasiae* mating type from different Pacific countries.

- 120. Galloway, L. D. (1936). Report of the Imperial Mycologist. <u>Science Report of the</u> <u>Agricultural Research Institute, Pusa.</u> (pp. 120–136).
- 121. Gendua, M. A., & Johnston, M. (1996). The performance of taro (*Colocasia esculenta*) seedlings grown to maturity. In <u>The Second Taro Symposium</u>. <u>Proceedings of an International Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 79–82).

Taro seedlings showed greater variation in their reaction to *Phytophthora colocasiae* than their parents. It is concluded that selection within seedling populations offers much potential.

122. Ghani, F. D. (1980). The status of Keladi China Colocasia esculenta (L.) Schott cultivation in Peninsula Malaysia. In <u>International Symposium on Taro and Cocoyam</u>. Visayas State College of Agriculture, Baybay, Leyte, Philippines, 24–25 September, 1979. (pp. 35–54). Stockholm, Sweden: International Foundation for Science. Provisional Report (International Foundation for Science) No. 5.

In this account of taro growing in Malaysia, taro leaf blight is reported as sometime occurring during wet weather. When it occurs, it is serious causing decay of the petioles and the corms.

123. Ghosh, S. K., & Das, N. (1996). Physiology of sporangial germination of *Phytophthora colocasiae* Racib. *in vitro*. <u>Advances in Plant Sciences</u> 9(1), 107-110. Sporangia of *P. colocasiae*, the cause of leaf blight and corm rot of taro (*Colocasia esculenta*), were harvested from 10 day old cultures grown in oat + yeast extract + thiamine medium. The mode of sporangial germination was investigated in both distilled and tap water at various temp. (10–30 C) and incubation durations. Both direct and indirect germination of sporangia took place. At 10ø, indirect germination began within 15 min and 100% germination took place after 2 h, while at 30ø it started after 30 min and only 18% of sporangia germinated indirectly after 2 h. Direct germination occurred up to 6.1% at 30ø after 3 h and even after 24 h but at 10ø no direct germination was observed.

124. Ghosh, S. K., & Sitansu Pan . (1989). A comprehensive account of the fungal diseases of *Colocasia esculenta* (L.) Schott. <u>Indian Journal of Mycological</u> <u>Research 27</u>(2), 107–119.

This review covers the distribution, symptoms, epidemiology, aetiology, perennation, hosts, losses caused by and control measures for leaf blight (*Phytophthora colocasiae*), dry rot (*Fusarium [solani* var.] coeruleum and F. solani), and the root and corm rots caused by *Pythium* spp.

125. Ghosh, S. K., & Sitansu Pan. (1991). Control of leaf blight of taro (*Colocasia esculenta* (L.) Schott) caused by *Phytophthora colocasiae* Racib. through fungicides and selection of variety. Journal of Mycopathological Research 29(2), 133-140.

Spraying with Ridomil MZ 72 WP [metalaxyl] at 3 kg/ha at intervals of 15 d was highly effective in controlling the disease under field conditions, and gave max. net financial return. This fungicide was equally effective against *P. colocasiae in vitro*. Of 11 cultivars screened under natural epiphytotics, Burdwan local was the best for commercial cultivation in this agroclimatic zone.

126. Ghosh, S. K., & Sitansu Pan. (1994). Pectolytic and cellulolytic enzyme activity by 3 isolates of *Phytophthora colocasiae* Racib. with graded virulence. <u>Mysore Journal of Agricultural Sciences</u> 28(1), 47–51.

The involvement of cell wall degrading enzymes in the pathogenesis of *P. colocasiae* on *Colocasia esculenta* was investigated using 3 isolates of the pathogen with high, medium and low virulence. In *in vitro* experiments using culture filtrates, production of polygalacturonase (PG), pectin methyl esterase (PME) and polymethyltranseliminase (PMTE) was greatest for the isolate with high virulence; no polymethylgalacturonase (PMG) activity was determined. In further *in vivo* tests on detached leaves, PMTE, PMG and PG activity was highest for the most virulent isolate; no PME activity was determined.

127. Giri, D., Banerjee, K., Laha, S. K., & Khatua, D. C. (1989). Some diseases of horticultural and field crops. <u>Environment and Ecology</u> 7(4), 821–825.

Amongst the diseases detected during surveys undertaken in the kharif and rabi seasons of 1981 in West Bengal, India, leaf blight (*Phytophthora colocasiae*) of *Colocasia nymphaeifolia* was recorded for the first time in India.

128. Gollifer, D. E. (1971). Preliminary observations on the performance of cultivars of taro (*Colocasia esculenta* L.) in the British Solomon Islands with notes on the incidence of taro leaf blight (*Phytophthora colocasiae* Rac.) and other diseases. In <u>Tropical root and tuber crops tomorrow. Volume 2. Proceedings of the Second International Symposium on Tropical Root and Tuber Crops.</u> Honolulu, Hawaii, 23–30 August 1970. (pp. 56–60). Honolulu, Hawaii, USA: University of Hawaii.

All cultivars surveyed were infected by *Phytophthora colocasiae*. The effect of the disease on yield has not been measured in the Solomons.

129. Gollifer, D. E. (1972). Taros *Colocasia esculenta* L. <u>Annual Report 1971, British</u> <u>Solomon Islands Protectorate, Department of Agriculture, Dala Experimental</u> <u>Station</u> (pp. 38–45). Honiara, Solomon Islands: Department of Agriculture.

Results of cultivar, fungicide and yield loss trials are reported.

130. Gollifer, D. E., & Brown, J. F. (1974). Phytophthora leaf blight of Colocasia esculenta in the British Solomon Islands. <u>Papua New Guinea Agricultural</u> <u>Journal</u> 25(1-2), 6-11.

Leaf blight, caused by *P. colocasiae*, is the most widespread disease of this crop on the larger volcanic islands. None of the 181 local cultivars tested was immune or highly resistant to the fungus. A small proportion, however, did not show high levels of disease. Cu fungicides as foliar sprays, although giving poor control, resulted in yield increases of up to 25%.

131. Gollifer, D. E., Jackson, G. V. H., & Newhook, F. J. (1980). Survival of inoculum of the leaf blight fungus *Phytophthora colocasiae* infecting taro, *Colocasia esculenta* in the Solomon Islands. <u>Annals of Applied Biology</u> 94(3), 379–390.

The fungus was isolated by baiting with detergent-treated taro leaf discs placed on water slurries of soil, on suspensions of macerated leaf lesions or on washings from petioles of harvested plants. Inoculum on detached leaf lesions or in soil remained viable for only a few days, and that on petiole bases (used for vegetative propagation) for 2 days if stored dry, but for 14 days if planted in the field immediately. Artificial augmentation of surface inoculum with naturally produced sporangia extended the period of inoculum detectability. Incubation of inoculated tops under high humidity led to active infection and sporulation on petioles, especially the cut ends. Of several aroids tested only *Alocasia macrorrhiza* proved susceptible but it has not been found naturally infected. Thus perennation between crops is effected by short-lived, surface propagules and possibly by mycelium within petiole

lesions. Reduction of the former and prevention of the latter might be achieved by dry storage of tops (used for propagation) for 2–3 weeks.

132. Gomez, E. T. (1925). Blight of gabi (*Phytophthora colocasiae* Rac.) in the Philippines. Philippine Agriculturist 14, 429-440.

The importance, distribution, symptoms, causal organism, environmental factors affecting the disease and control measures of gabi (*Colocasia esculenta*) blight in the Philippines are discussed.

- Gomez-Moreno, M. L. (1942). Araceas de Fernando Poo. [Araceae of Fernando Poo]. <u>Ann Agic Terr Esp Golfo Guinea</u>, 7–37.
- 134. Goswami, B. K., Zahid, M. I., & Haq, M. O. (1993). Screening of Colocasia esculenta germplasm to Phytophthora leaf blight. <u>Bangladesh Journal of</u> <u>Plant Pathology 9(1-2)</u>, 21-24.
- Among 50 lines tested by inoculation in the field during 1987–89, 2 were highly resistant to *P. colocasiae*, 5 resistant, 12 moderately resistant and the rest moderately to highly susceptible.
- 135. Greenough, D. R. (1996). Taro leaf blight research programme for American Samoa. <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 87–88). Noumea, New Caledonia: South Pacific Commission. Unpublished.

Variable results have been achieved with Ridomil in the control of taro leaf blight in American Samoa. Research needs were identified as: chemical control studies with Ridomil, Ridomil/Aliette and calcium hypochlorite and integrated management studies including variety and fertility trials. Progress of this research is briefly described.

136. Greenough, D. R., & Trujillo, E. E. (1996). Effects of nitrogen, calcium, and/or potassium nutrition on the resistance and/or susceptibility of Polynesian taros, *Colocasia esculenta*, to the taro leaf blight, caused by the fungus *Phytophthora colocasiae*. In <u>ADAP Project Report</u> (pp. 19–25).

The objectives and progress and major accomplishments in the project are reported. Results of field trials in Hawaii, American Samoa and Guam are reported.

137. Greenough, D., Fa'aumu, S., & Tilialo, R. (1994). Effect of three concentrations of Ridomil 2E on the incidence of taro leaf blight (*Phytophthora colocasiae*) in American Samoa. <u>Phytopathology</u> 84(10), 1115. Abstract of a paper presented at the APS Annual Meeting, Albuquerque, New Mexico, 6–10 August, 1994.

The epidemic of taro leaf blight in American Samoa starting in June 1993 is described. Chemical and cultural control measures were initiated. Ridomil 2E at 3, 5 and 7 fluid ounces/2 gallons water were applied as a soil drench, 2 and

4 months after planting. The highest concentration gave the best control, with only some phytotoxicity observed.

Gregory, P. H. (1983). Some major epidemics caused by *Phytophthora*. D. C. Erwin,
S. Bartnicki-Garcia, & P. H. Tsao (Editors), *Phytophthora*: its Biology,
Taxonomy, Ecology, and Pathology (pp. 271–278). St Paul, Minnesota, USA:
APS Press (American Phytopathological Society).

Five examples are discussed including the epidemiology of *Phytophthora* colocasiae on taro.

139. Guarino, L., & Jackson, G. V. H. (1986). <u>Describing and documenting root crops in</u> <u>the South Pacific</u>, 141 pp. Suva, Fiji: FAO/SPC. RAS/83/001 Field Document No. 12.

The presence of *Phytophthora colocasiae* in the region and the breeding for resistance in Papua New Guinea and Solomon Islands is noted.

140. Gunua, T. G. (1997). Foliar diseases of taro in the wahgi valley of the Western highlands province of Papua New Guinea. <u>Papua New Guinea Journal of Agriculture</u>, Forestry and Fisheries **40**(1-2), 22-26.

Foliar diseases of taro (*Colocasia esculenta*) in 3 areas of the Wahgi Valley in the Western Highlands of Papua New Guinea were investigated. Taro leaf blight (*Phytophthora colocasiae*) was not found at any of the sites.

141. Gurr, P. (1996). The taro leaf blight situation in American Samoa. <u>Taro Leaf Blight</u> <u>Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 35–38). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The detection of the taro leaf blight epidemic in American Samoa in 1993, its spread and measures taken to control the disease are outlined. Successes and problems with chemical control using the copper based fungicide (Paranoias), Ridomil 2E and calcium hypochlorite are discussed.

142. Hicks, P. G. (1967). Resistance of *Colocasia esculenta* to leaf blight caused by *Phytophthora colocasiae*. <u>Papua New Guinea Agricultural Journal</u> 19(1), 1–4.

Seven of the clones tested were weakly to moderately resistant.

- 143. Hill, D. S., & Waller, J. M. (1990). Taro. In <u>Pests and Diseases of Tropical Crops</u> <u>Field Handbook</u>.
- 144. Hill, V. (1995). In worlds of our own: different ways of seeing and the small-holder taro grower in Western Samoa. Unpublished doctoral dissertation, Victoria University, Wellington, New Zealand.
- 145. Ho, H. H. (1992). Keys to the species of *Phytophthora* in Taiwan. <u>Plant Protection</u> <u>Bulletin (Taiwan)</u> 1(2), 104–109.

A dichotomous key and a synoptic key for the identification of the 23 *Phytophthora* species recognized in Taiwan are presented.

146. Ho, H. H. (1981). Synoptic keys to the species of *Phytophthora* in Taiwan. <u>Mycologia</u> 73(4), 705-714.

Three synoptic keys are presented to facilitate identification of plant pathogenic *Phytophthora* species in culture.

147. Ho, H. H., & Chang, H. S. (1992). A re-evaluation of *Phytophthora* species described by K. Sawada in Taiwan. **43**, 297–316.

The taxonomic status of all 23 species of *Phytophthora* described by K. Sawada in Taiwan is reviewed, based on a study of available dried plant specimens, type/authentic cultures and the original publications. Sawada's findings of *P. colocasiae* on taro are confirmed.

148. Ho, H. H., Hu, Y. N., Zhuang, W. Y., & Liang, Z. R. (1983). Mating types of heterothallic species of *Phytophthora* in China. I. <u>Acta Mycologica Sinica</u> 2(3), 187–191.

Each of 38 isolates of 7 heterothallic *Phytophthora* spp. was grown in dual culture with known A1 and A2 strains. There was no correlation between mating types and hosts or geographical distribution.

- 149. Ho, H. H., Liang, Z. Y., Zhuang, W. Y., & Yu, Y. N. (1984). *Phytophthora* spp. from rubber tree plantations in Yunnan Province in China. <u>Mycopathologia</u> 86, 121–124.
- 150. Ho, P. K., & Ramsden, L. (1998). Mechanisms of taro resistance to leaf blight. Tropical Agriculture (Trinidad) 75(1), 39-44.

Five cultivars of taro and 2 other related aroids were screened for the induction of pathogenesis-related (PR) proteins in response to infection by *Phytophthora colocasiae*. Extracellular fluid from infected leaves was tested for PR protein expression by SDS-PAGE analysis and activity gels were used to measure the activity of the known PR proteins, beta-1,3-glucanase, proteinase inhibitors and peroxidase). Infected plants showed increased levels of PR proteins but this did not correlate with resistance in the most susceptible cultivars. Despite high levels of some PR proteins, infection still occurred in these cultivars. Successful resistance in other plants was more closely linked to the pattern of expression of proteinase inhibitors which appear to be an important defence strategy in taro in related aroids.

151. Hohl, H. R. (1975). Level of nutritional complexity in *Phytophthora*: lipids, nitrogen sources and growth factors. <u>Phytopathologische Zeitschrift</u> 84(1), 18–33.

In a medium (P-1L) that supported good vegetative growth of all 24 test strains, representing 16 *Phytophthora* spp., the single most effective additives were lecithin and linoleic acid, which were generally superior to sterols.

152. Hohl, H. R. (1975). Levels of nutritional complexity in *Phytophthora*: lipids, nitrogen sources and growth factors. <u>Phytophthora Newsletter</u> (No. 3), 12.

A medium containing lecithin and linoleic acid was devised which supported good vegetative growth of 24 strains representing 16 *Phytophthora* spp. These strains were divided into 4 levels of nutritional complexity on the basis of the results.

153. Hohl, H. R. (1983). Nutrition of *Phytophthora*. D. C. Erwin, S. Bartnicki-Garcia, & P. H. Tsao (Editors), *Phytophthora*: its Biology, Taxonomy, Ecology, and Pathology (pp. 41–54). St Paul, Minnesota, USA: APS Press (American Phytopathological Society).

The nutritional aspects of vegetative growth of *Phytophthora* species is reviewed, including several references to *P. colocasiae*.

154. Holliday, P. (1980). *Phytophthora colocasiae*. In <u>Fungus diseases of tropical crops</u>. (pp. 348–349). Cambridge, UK.: Cambridge University Press.

A description of the fungus is given and symptoms of the disease and its control are briefly discussed.

- 155. Houtondji, A., Palay, L., & Messiaen, C. M. Recherches sur l'activite eventuelle de quelques nematicides vis a vis de champignons phytopathogenes du sol (chou caraobe). [Investigations on the possible antifungal activity of some nematicides (tannia plant)]. In <u>Congres sur la protection de la sante humaine et des cultures en milieu tropical: nouvelles strategies de protection integree des cultures et de lutte contre les vecteurs de maladies, regions tropicales et subtropicales. Marseille, France, 2–4 July 1986. (pp. 301–304). In French.</u>
- 156. Hunter, D. G., & Delp, C. (1999). Breeders club helps save taro. <u>The University of</u> <u>the South Pacific Bulletin</u> 32, 2.
- 157. Hunter, D. G., & Delp, C. (2000). Taro returning to Samoa. <u>IRETA's South Pacific</u> <u>Agricultural News</u> 17, 4–5.
- 158. Hunter, D. G., Delp, C., Iosefa, T., & Fonoti, P. (2000). Improving taro production in Samoa through breeding and selection. In <u>12th Symposium of the</u> <u>International Society for Tropical Root Crops.</u> Tsukuba, Japan, 10–16 September 2000.
- 159. Hunter, D. G., Delp, C., Iosefa, T., & Metai, A. (2000). Samoan taro growers are battling taro leaf blight, *Phytophthora colocasiae*. In <u>1st Asian Conference on</u> <u>Plant Pathology</u>. Beijing, China, 25–28 August 2000. (p. 335).

This poster presented at the conference is available on page 335 of the 3rd circular/program.

160. Hunter, D. G., & Fonoti, P. (2000). Taro leaf blight-tackling the problem as partners. FOCUS (July), 18.

Two initiatives in Samoa, a taro breeders club and a taro improvement project, are described in this short article.

161. Hunter, D. G., Iosefa, T., Delp, C. J., & Fonoti, P. (2000). Beyond taro leaf blight: a participatory approach for plant breeding and selection for taro improvement in Samoa. In <u>Proceedings of the International Symposium on Participatory Plant Breeding and Participatory Plant Genetic Resource Enhancement.</u> Pokhara, Nepal, 1–5 May 2000. Cali, Colombia: CGIAR Systemwide Program on Participatory Research and Gender Analysis for Technoloy Development and Institutional Development, Centro Internacional de Agricultura Tropical.

This paper documents the arrival and impact of taro leaf blight on the Samoan economy and initial attempts to try and contain the spread of the disease. The article focuses on the need for breeding for resistance as the most sustainable approach for management of the disease and compares conventional and participatory methods.

162. Hunter, D., & Pouono, K. (1998). Evaluation of exotic taro cultivars for resistance to taro leaf blight, yield and quality in Samoa. <u>Journal of South Pacific</u> <u>Agriculture 5(2)</u>, 39–43.

> Four taro cultivars (Pwetepwet, PSB-G2, Pastora and Toantal) were screened and evaluated in trials at the University of the South Pacific Alafua Campus, Samoa, for their resistance to taro leaf blight, and for their yield and eating quality. Disease severity levels were not significantly different for any of the cultivars studied. Corm yields were highest for Pastora, followed by PSB-G2, Pwetepwet and Toantal. Toantal and PSB-G2 rated highest for taste and dry weight.

163. Hunter, D., Pouono, K., & Semisi, S. (1998). The impact of taro leaf blight in the Pacific Islands with special reference to Samoa. <u>Journal of South Pacific</u> <u>Agriculture 5(2), 44–56.</u>

An account of *Phytophthora colocasiae* on taro in the Pacific Islands, especially Samoa, is given and control methods discussed.

164. Hunter, D., Sivan, P., Pouono, K., & Amosa, F. (1998). Taro leaf blight and its management in Samoa. <u>7th International Congress on Plant Pathology</u>. Edinburgh, UK, 10-14 August 1998.

An abstract of this paper is available electronically on the webpage at www.bspp.org.uk/icpp98/abstracts/4.7/8.html and also in the printed proceedings of the congress. The impact of taro leaf blight in Samoa, its cultural control, screening of exotic taro cultivars, breeding, chemical control and future work are discussed.

165. Hunter, J. E., & Kunimoto, R. K. (1974). Dispersal of *Phytophthora palmivora* sporangia by wind-blown rain. <u>Phytopathology</u> 64(2), 202–206.

In this paper on the dispersal of spores of *P. palmivora*, reference is made to some unpublished work of the authors on *P. colocasiae*. In a pilot study with the taro pathogen, sporangia were not released into moving air under drying conditions, but were readily released by rain-splashing.

166. Iosefa, T., & Rogers, S. (1999). <u>The multiplication, growth and use of introduced taro</u> <u>cultivars in Samoa. Report of an impact assessment carried out during August</u> <u>to November, 1998</u>. Suva, Fiji Islands: Pacific Regional Agricultural Programme Project 1—Farming Systems in Low Lands.

Information on the performance of TLB-resistant cultivars in Samoa is given.

- 167. Irwin, S. V., Kaufusi, P., Banks, K., Pena, R. d. l., & Cho, J. J. (1998). Molecular characterization of taro (*Colocasia esculenta*) using RAPD markers. <u>Euphytica</u> 99, 183–189.
- 168. Ivancic, A. (1996). Breeding for resistance to taro diseases in Solomon Islands. In <u>Seminar on Pacific Plant Pathology in the 1990s.</u> Suva, Fiji Islands, 5–7 September 1991. (pp. 17–18). Noumea, New Caledonia: South Pacific Community.

A brief overview of taro leaf blight in the Solomon Islands (as well as other pests) and breeding for resistance are given.

169. Ivancic, A., Kokoa, P., Gunua, T., & Darie, A. (1996). Breeding approach on testing for resistance to taro leaf blight. In <u>The Second Taro Symposium</u>. <u>Proceedings of an International Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 93–96).

Resistance to taro leaf blight was studied under screenhouse, nursery and field conditions, and in special 'water beds'. The density of plants, temperature and humidity appeared to be the most important factors influencing infection and spread of the fungus. Plants growing in extremely hot and humid plastic cages showed higher susceptibility than those growing under normal conditions. Of all the methods, only that using water beds allowed the detection of different levels of resistance and susceptibility to *P. colocasiae*.

170. Ivancic, A., Kokoa, P., Simin, A., & Gunua, T. (1996). Mendelian studies of resistance to taro leaf blight. In <u>The Second Taro Symposium. Proceedings of</u> <u>an International Meeting.</u> Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 97–100).

Self-pollination and crossing between taro varieties indicated that the majority of Papua New Guinea genotypes are heterozygous for resistance to taro leaf blight. The most frequent ratios in segregating populations resulting from crosses resistant X resistant and resistant X susceptible was 3:1, 9:7 and

7:9. It is concluded that it is likely that more than one gene controls resistance to taro leaf blight.

171. Ivancic, A., Kokoa, P., Simin, A., & Gunua, T. (1995). Resistance to *Phytophthora* colocasiae Racib. in taro Colocasia esculenta (L.) Schott: a genetic study of segregating populations. Journal of South Pacific Agriculture 2(2), 17–21.

Populations analysed in this study were developed from three groups of crosses: (a) resistant X resistant; (b) resistant X susceptible; and (c) susceptible X susceptible. The most frequent segregation ratios (resistant:susceptible) were 3:1, 9:7, 7:9 and 13:3, suggesting that the number of genes controlling resistance to *P. colocasiae* in taro may be relatively low. The appearance of resistant genotypes in populations resulting from crosses between two (partially) susceptible genotypes indicates that minor genes associated with partial resistance may be involved.

172. Ivancic, A., & Okpul, T. (1996). A new mutation of taro (*Colocasia esculenta*) observed at Bubia Agricultural Research Centre. <u>Papua New Guinea Journal of Agriculture, Forestry and Fisheries</u> **39**(2), 6–9.

An unusual mutant of taro was discovered in the cycle-2 population of the recurrent selection programme at the Bubia Agricultural Research Centre, Papua New Guinea. The mutant plant developed a thin elongated stem (about 95 cm long). The stem had several nodes, each carrying 1 leaf. The leaf size decreased with distance from the corm top. The stem was filled with soft, aerated spongy tissue. Side stems were thin and relatively long, growing from lower nodes of the main stem and the corm top. Their structure was similar to that of the main stem. The plant had a normal corm. It was susceptible to *Phytophthora* leaf blight and did not flower. Authors' summary.

173. Ivancic, A., Simin, A., Ososo, E., & Okpul, T. (1995). Wild taro (*Colocasia esculenta* (L.) Schott.) populations in Papua New Guinea. <u>Papua New Guinea Journal</u> of Agriculture, Forestry and Fisheries 38(1), 31–45.

Wild taro populations were evaluated for breeding purposes in several locations of Papua New Guinea. All evaluated populations were found to be susceptible to taro leaf blight (*Phytophthora colocasiae*) and the Alomae-Bobone virus complex. Absence of taro leaf symptoms was mainly due to isolation of the population (the pathogen did not reach the population). Flowering ability was relatively high. At least a few plants were found to be flowering in each population. The analysis of quantitative variation indicates that there was relatively high uniformity in leaf dimensions and number of lamina veins within populations. Relatively low variation of measured quantitative characteristics and uniformity in qualitative traits indicate that seed propagation may be extremely rare and that at least some PNG wild taro populations may consist of a single clone. It is concluded that in breeding, wild taro genotypes can be used as sources of genes for the improvement of flowering ability, environmental adaptability (for swampy or dry land conditions), growth vigour and earliness.

 174. Jackson, G. V. H. (1996). Brief summary of situation in the region and comments on available assistance for long-term regional projects on taro leaf blight control. <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 71–74). Noumea, New Caledonia: South Pacific Commission. Unpublished.

> The impact of taro leaf blight in the Pacific Islands is described. The need for government action, the role of donors and inter-governmental agencies, control of the disease in Western Samoa, assistance for the region, infrastructure support and breeding for taro leaf blight resistance are discussed.

175. Jackson, G. V. H. (1980). <u>Diseases and pests of taro</u>, 51 pp. Noumea, New Caledonia: South Pacific Commission.

This handbook contains a section on taro leaf blight and includes information on distribution, symptoms, spread, effect on yield and control of the disease.

 Jackson, G. V. H. (1990). Pathogen-free Pacific taro. <u>FAO Plant Protection Bulletin</u> 38(3), 145–150.

The availability of 59 varieties and 8 breeders' lines of taro, 3 varieties of giant taro and a single tannia as pathogen-tested tissue cultures, or as suckers from indexed plants grown in quarantine, is reported. Some varieties have resistance to *Phytophthora colocasiae*.

177. Jackson, G. V. H. (1986). Preliminary results from surveys of plant diseases in the Federated States of Micronesia and Palau. In <u>UNDP/FAO/GTZ/IRETA</u> <u>Regional Crop Protection Workshop.</u> Apia, Western Samoa, 8–12 September, 1986. (106–113.). Suva, Fiji: UNDP.

Preliminary results of surveys for plant diseases in the Federated States of Micronesia and Palau are presented and pathogens of major quarantine importance (including *Phytophthora colocasiae* on taro) are identified.

 Jackson, G. V. H. (1996). Strategies for taro leaf blight research in the region. <u>Taro</u> <u>Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 95–100). Noumea, New Caledonia: South Pacific Commission. Unpublished.

> The research strategies of the countries and territories in the region are discussed based on their different needs. The varying needs of countries are identified as those where outbreaks are recent (American and Western Samoa), where outbreaks are long-established (Solomon Islands and Papua New Guinea) and those countries still free of taro leaf blight. Research needed in the first two categories is outlined and contingency plans, emergency response groups, quarantine surveillance and community awareness campaigns highlighted as necessary for the third. The need for a regional approach to the disease is also flagged to prevent further spread.

179. Jackson, G. V. H. (1977). Taro leaf blight. <u>Advisory Leaflet, South Pacific</u> <u>Commission (No. 3), 4 pp.</u>

The disease of *Colocasia esculenta* caused by *Phytophthora colocasiae* is described and recommendations are given for its control.

180. Jackson, G. V. H. (1999). Taro leaf blight. <u>Pest Advisory Leaflet</u> (No. 3), 2 pp. Published by the Plant Protection Service of the Secretariat of the Pacific Community.

> In this 2nd edition of this leaflet the symptoms, effect of the disease, infection and spread, control and quarantine precautions for this disease are outlined.

181. Jackson, G. V. H. (1997). Taro leaf blight control strategies. (p. 20 pp.). Second consultancy mission for Western Samoa Farming Systems Project.

In this consultancy report commissioned by International Development Support Services on behalf of the Western Samoa Farming Systems Project, MAFFM (Ministry of Agriculture, Forestry, Fisheries and Meteorology), a review of the breeding and varietal selection work carried out at Nu'u Crops Development Centre and the University of the South Pacific since the last visit (1996) is presented. Demonstration of methods of evaluating seedlings for taro leaf blight resistance in the nursery and field and the formulation of a programme for multiplying introduced varieties for farmer evaluation are also reported. Recommendations for the programme are made.

182. Jackson, G. V. H. (1996). <u>Taro leaf blight control strategies. First consultancy</u> <u>Mission Report. Western Samoa Farming Systems Project</u>, 46 pp. Samoa: Ministry of Agriculture Fisheries, Forests and Meteorology Western Samoa.

> In this consultancy report commissioned by International Development Support Services on behalf of the Western Samoa Farming Systems Project, MAFFM (Ministry of Agriculture, Forestry, Fisheries and Meteorology); strategies to overcome taro leaf blight since its first outbreak in 1993 in Samoa are considered. The existing taro leaf blight programme was evaluated and some recommendations made for future research. A protocol for varietal selection and breeding is proposed.

183. Jackson, G. V. H., & Breen, J. (1985). <u>Collecting, describing and evaluating field</u> <u>crops</u>. Suva, Fiji.: UNDP/FAO. RAS/83/001 Field Document No. 8.

Included in this publication are guidelines for assessing taro leaf blight in the field.

184. Jackson, G. V. H., & Firman, I. D. (1984). Guidelines for the movement of taro and other aroids within the Pacific. In S. Chandra (Editor), <u>Edible Aroids</u> (pp. 194–211). Oxford, UK: Clarendon Press. Hazards (including taro leaf blight) in the movement of germplasm of taro and other edible aroids within the Pacific region are detailed and techniques for safe transfer discussed. It is concluded that direct importation of vegetative material should be avoided in favour of transfer through intermediate quarantine outside the region, or as tissue cultured plants derived from shoot tips.

185. Jackson, G. V. H., & Gollifer, D. E. (1975). Disease and pest problems of taro (Colocasia esculenta L. Schott) in the British Solomon Islands. <u>PANS</u> 21(1), 45-53.

More than 200 local varieties were screened for resistance to *Phytophthora colocasiae*. Of these only Abumae has shown promise. However, the taste and texture of this variety are unacceptable.

186. Jackson, G. V. H., & Gollifer, D. E. (1975). Storage rots of taro (*Colocasia esculenta*) in the British Solomon Islands. <u>Annals of Applied Biology</u> 80 (2), 217–230.

Several fungicides chosen for their ability to control the pathogens previously isolated from stored cocoyam corms failed to prevent severe rotting. This result led to a reappraisal of the organisms involved in the initial stages of decay. Isolations made from stored corms during the first 5 days showed that *Phytophthora colocasiae* and *Pythium splendens* were the dominant fungi in the rots. Later *Botryodiplodia theobromae* rapidly colonized the corms to complete the decay. Attempts to reduce losses by leaving petiole bases, cormels and roots attached only succeeded in delaying infection by a few days. Corms placed in soil in well-drained pits stored relatively well up to 4 weeks without impaired taste. Fungal rots were completely eliminated in corms stored in the soil, but bacterial rots caused by *Erwinia chrysanthemi* were responsible for some decay.

187. Jackson, G. V. H., & Gollifer, D. E. (1977). Studies on the taro leaf blight fungus *Phytophthora colocasiae* in the Solomon Islands. In <u>Regional Meeting on the</u> <u>Production of Root Crops.</u> Suva, Fiji, 24–29 October 1975. (pp. 107–110). Noumea, New Caledonia: South Pacific Commission. SPC Technical Paper No. 174.

Phytophthora colocasiae has become a limiting factor on taro (*Colocasia esculenta*) production and has caused an increasing dependence upon sweet potato (*Ipomoea batatas*). The fungus attacks both leaves and corms. However, corm-rots caused by *P. colocasiae* do not develop in the field, but extensive infection occurs after harvest. Within 5 days corms are often completely decayed. Control measures, using fungicides and screening for resistant varieties, are discussed.

188. Jackson, G. V. H., Gollifer, D. E., & Newhook, F. J. (1980). Studies on the taro leaf blight fungus *Phytophthora colocasiae* in Solomon Islands: control by fungicides and spacing. <u>Annals of Applied Biology</u> 96(1), 1–10. In trials in 1972-4, mist blower application of 2.25 kg copper oxychloride/ha gave effective control of P. colocasiae and increased main plant and sucker plant corm yields to 10.74 and 2.79 t/ha respectively compared with 6.78 t and 1.88 t in untreated controls. Mancozeb did not control the disease or increase corm yields. Phytotoxicity from captafol nullified any potential gain in yield from disease control. Leaf removal from healthy plants to maintain 4 leaves/plant for 90 days to simulate roguing of leaves for disease control caused no yield loss. Regular roguing of diseased leaves over the same period in plots affected by a severe epiphytotic did not eradicate the pathogen. Disease increased rapidly after roguing ceased and corm yields were greatly decreased. Attempts to decrease the effect of P. colocasiae by wider than traditional spacing (76 X 76 cm) were unsuccessful. Plants free from competition normally had 6-7 leaves but this number was decreased by severe disease to 3-4, the same number as was borne by plants under the competitive conditions of closer than traditional spacing. Main corm yields increased with increasing plant density irrespective of the presence of P. colocasiae.

189. Jackson, G. V. H., Gollifer, D. E., Pinegar, J. A., & Newhook, F. J. (1979). The use of fungicides against post-harvest decay in stored taro in the Solomon Islands. In D. L. Plucknett (Editor), <u>Small-scale processing and storage of tropical</u> <u>root crops.</u> (pp. 130–150). Boulder, Colorado, USA: Westview Press. Westview Tropical Agriculture Series No. 1.

The control of postharvest decay of taro, including that caused by *Phytophthora colocasiae*, is discussed. At 5 days, rots caused by *P. colocasiae*, which were the first to develop in stored corms, were controlled by most of the fungicides tested. Best results were given by captan, copper oxychloride, captafol, mancozeb, Terrazole and sodium hypochlorite. Dipping in 1% sodium hypochlorite before storage in polythene bags gave good results and may be a suitable method for village storage or where corms are being taken long distances to market.

- 190. Jackson, G. V. H., Gollifer, D. E., & Regional Meeting on the Production of Root Crops. (1977). Studies on the taro leaf blight fungus (*Phytophthora colocasiae*) in the Solomon Islands. <u>Regional Meeting on the Production of Root Crops; collected papers. Conference Regionale de la Production des Plantes a Racines Alimentaires; documents de travail. Suva, Fiji, 24 Oct 1975. (pp. 107–110). Noumea, New Caledonia: South Pacific Commission.</u>
- Jackson, G. V. H., & Macfarlane, R. (1996). Contingency plans for the eradication of *Phytophthora colocasiae* in Pacific Island countries and territories. <u>Taro Leaf</u> <u>Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 101–107). Noumea, New Caledonia: South Pacific Commission. Unpublished.

Possibilities for the eradication of taro leaf blight in the Pacific are outlined. The general principals, initial response sequence, preliminary action sequence and general response activities of contingeny action plans are itemised. Specific strategies for the eradication of taro leaf blight are then considered. Duty statements for key personnel in an eradication campaign are given.

192. Jackson, G. V. H., & Macfarlane, R. (1992). Plant protection in atolls of the Pacific. In <u>Workshop on Developing an Agricultural Research Programme for the</u> <u>Atolls.</u> Pacific Harbour, Fiji, 19–23 November 1990. (pp. 131–145). Apia, Western Samoa: IRETA.

Phytophthora colocasiae is identified as an important disease, which has been accidently introduced to atolls in the Pacific region. General recommendations for improving plant protection in atolls are given.

- 193. Jackson, G. V. H., & Pelomo, P. M. (1979). <u>Breeding for resistance to diseases of taro</u>, *Colocasia esculenta*, in Solomon Islands, 8 pp. Honiara, Solomon Islands: Ministry of Agriculture and Lands, Dodo Creek Research Station.
- 194. Jackson, G. V. H., & Pelomo, P. M. (1980). Breeding for resistance to diseases of taro, *Colocasia esculenta*, in Solomon Islands. In <u>International Symposium on Taro and Cocoyam</u>. Visayas State College of Agriculture, Baybay, Leyte, Philippines, 24–25 September 1979. (pp. 287–298). Stockholm, Sweden: International Foundation for Science. Provisional Report (International Foundation for Science) No. 5.

Breeding in the Solomon Islands for resistance to taro leaf blight and taro viruses is reviewed.

- 195. Johnson, A. (1960). <u>A preliminary plant disease survey in Hong Kong</u>, 32 pp. Rome, Italy: FAO, Plant Production and Protection Division.
- 196. Johnston, A. (1969). A preliminary plant disease survey in the British Solomon Islands Protectorate. (p. 31 pp.). Honiara, Solomon Islands: Government Printing Office.

In this survey carried out in 1959, *Phytophthora colocasiae* is recorded on taro and its distribution (Choiseul, Ganongga, Malaita, Shortlands) in the Solomon Islands given.

197. Johnston, M., & Gendua, P. A. (1998). The growth performance of taro (*Colocasia* esculenta) grown from true seed. <u>Tropical Agriculture</u> **75**(1/2), 13–17.

Some variation in resistance to taro leaf blight was observed in seedlings and this was correlated with corm yield.

- 198. Kamlesh. (1989). <u>Antifungal activity of some homoepathic drugs against</u> *Phytophthora colocasiae.* Unpublished doctoral dissertation, Kurukshetra University, Kurukshetra, India.
- 199. Karanya, I. (1984). <u>Rok bai mai (Phytophthora colocasiae</u> Raciborski) khong phuak lae kan thotsop phit khong sankhemi. (*Phytophthora* leaf blight of taro (*Phytophthora colocasiae* Raciborski) and fungitoxicity test. Unpublished
doctoral dissertation, Kasetsart University, Graduate School., Bangkok, Thailand . In Thai.

In this MSc thesis, the fungus that caused taro leaf blight during the rainy season was identified as Phytophthora colocasiae. Studies on the physiological properties of P. colocasiae demonstrated that the optimum temperature and pH for maximum mycelial growth were 25-30 C and pH 4-8, respectively. This was found only when P. colocasiae was cultured on PDA with added taro extract and OMA media. P. colocasiae could successfully be mated with P. palmivora in the A1 group. P. colocasiae is categorized as belonging to the A2 mating group. It is concluded that P. colocasiae is a heterothallic fungus. Pathogenicity tests showed that P. colocasiae could successfully infect and colonize all parts of the taro, except the rhizome. P. colocasiae produced clear and specific symptoms of concentric zones of leaf blight lesions. Morphological observation of P. colocasiae showed that it was capable of producing either ellipsoid or elongated ellipsoid zoosporangium in vivo. Indirect germination of this structure was found on taro leaf that yielded a large number of zoospores and later formed and encysted zoospores. Several germ tubes could be formed before direct penetration into intercellular space of the host epidermal cells. Evaluation on the fungitoxicity of various fungicides showed that Ridomil and Galben inhibited mycelial growth. Application of Ridomil at 250 ppm on taro leaves could visibly control the growth of P. colocasiae, but at higher dosea (2000 ppm) phytotoxicity was apparent.

- 200. Karanya, I., & Thammasak, S. (1984). Kan suksa rok bai mai khong phuak (*Phytophthora colocasiae* Rac.) duai scanning electron microscope. (Scanning electron microscope studies of taro leaf blight disease (*Phytophthora colocasiae*) in Thailand.). Journal of Thai Phytopathological Society 4(2), 69–76.
- 201. Karanya, I., & Thammasak, S. (1984). Kan thotsop phit khong san khemi kanchat ra kap chua *Phytophthora colocasiae* Rac. sahet rok bai mai khong phuak. (Evaluation on fungitoxicity against taro blight pathogen (*Phytophthora colocasiae* Rac.) in Thailand). Journal of Thai Phytopathological Society 4(2), 60–68.
- 202. Karanya, I., & Thammasak, S. (1983). Rok bai mai ru rok ta-sua khong phuak (Taro (Colocasia antiquorum Schott.) blight disease (*Phytophthora colocasiae*) in Thailand. Journal of Thai Phytopathological Society 3(1), 1–9. In Thai.
- 203. Kay, D. E. (1987). Taro. In <u>Root Crops</u> (pp. 233–251). London, UK: Tropical Development and Research Institute.

In this chapter on taro, *Phytophthora colocasiae* is identified as an important pre- and post-harvest disease.

204. Ko, W. H. (1979). Mating-type distribution of *Phytophthora colocasiae* on the island of Hawaii. <u>Mycologia</u> 71(2), 434–437.

All 101 isolates from 16 *Colocasia esculenta* fields were of mating type A1; 8 from the island of Maui and 5 from Kauai were also of A1. Five isolates previously reported (3 from Asia) were all A2. It is suggested that the fungus originated in Asia.

205. Kohler, F., Pellegrin, F., Jackson, G. V. H., & MacKenzie, E. (1997). Taro. In <u>Diseases of Cultivated Crops in Pacific Island Countries</u> (pp. 52–53, 169). Noumea, New Caledonia: Secretariat of the Pacific Community.

Symptoms of the disease are briefly described and illustrated. Control measures are also outlined.

206. Kokoa, P. (1991). <u>A checklist of plant diseases in the Highlands of Papua New Guinea 1985–1990</u>, 22 pp. Papua New Guinea: Department of Agriculture and Livestock. Technical Report No. 91/2.

Phytophthora colocasiae is recorded on taro in Gulf Province and Western Highlands Province.

207. Kokoa, P. (1999). Genetic diversity of *Phytophthora colocasia*e in Papua New Guinea. In <u>Annual Report for 1998 (p. 96)</u>. Taro Network for South-East Asia and Oceania (TANSAO).

Collections of *P. colocasiae* in Papua New Guinea are described. One batch of isolates has been sent to CIRAD, France for isoenzyme analysis.

208. Kokoa, P. (1993). Taro leaf blight in Papua New Guinea: an overview. In <u>Book of Abstracts. The First Taro Symposium.</u> Lae, Papua New Guinea, 25 October 1993. (p. 15). Lae, Papua New Guinea: University of Technology.

The importance of the disease and methods of controlling it in Papua New Guinea were examined in this paper presented at this meeting. The importance of breeding for resistance is emphasised.

209. Kokoa, P. (1996). Taro leaf blight in Papua New Guinea: an overview. <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 45–49). Noumea, New Caledonia: South Pacific Commission. Unpublished.

In this report of taro leaf blight in Papua New Guinea, the importance of taro as a staple food crop, occurrence of the disease in the country and methods of control are described. Research on the disease carried out at Bubia Agricultural Research Centre is also highlighted, which includes work on screening for resistance, the epidemiology of taro leaf blight, disease and loss assessment and breeding for disease resistance.

210. Kokoa, P., & Darie, A. (1996). Field screening of taro varieties for resistance to taro leaf blight. In <u>The Second Taro Symposium</u>. Proceedings of an International <u>Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (p. 127). In this abstract it is reported that taro varieties from the Papua New Guinea germplasm collection were screened under field conditions for resistance to taro blight. Of 433 varieties, 3 (K333, K345 and Ainaben) showed a high degree of resistance or immunity to the disease. Their use in a breeding programme at Bubia Agricultural Research Centre is noted.

- 211. Kokoa, P., & Darie, A. Screening of taro (*Colocasia esculenta*) for resistance to taro blight (*Phytophthora colocasiae*). In <u>Annual Report 1992–1995, Bubia Agricultural Research Centre</u>. Lae, Papua New Guinea: Department of Agriculture and Livestock.
- 212. Kokoa, P., Ivancic, A., & Ganua, T. (1996). Laboratory methods of testing taro varieties for resistance to taro leaf blight. In <u>The Second Taro Symposium</u>. <u>Proceedings of an International Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (p. 127).

In this abstract, it is reported that spore counts on leaf pieces inoculated with a pure culture of *Phytophthora colocasiae*, were a better measure of disease resistance testing than measurement of lesion diameter.

- 213. Kulkarni, S. N., & Sharma, O. P. (1975). Corm rot of *Colocasia antiquorum* Schoff, due to *Phytophthora colocasiae* Sacc. JNKVV Research Journal 9(1–2), 70.
- 214. Lambert, M. (1979). Storage and processing of root crops in the Pacific. In D. L. Plucknett (Editor), <u>Small-scale Processing and Storage of Tropical Root</u> <u>Crops</u> (pp. 47–52). Boulder, Colorado, USA: Westview Press. Westview Tropical Agriculture Series, No. 1.

Included in this chapter is a brief discussion of postharvest problems of taro. It is emphasised that strict plant quarantine is necessary to protect Pacific islands currently free of taro leaf blight from the introduction of *Phytophthora colocasiae*.

215. Larsen, A. (1989). <u>Notes on root crops in Vanuatu</u>, 32 pp. Rome, Italy: FAO/SPC. RAS/83/001 Field Document.

Taro leaf blight was not found in Vanuatu, but the proximity of the disease in Papua New Guinea and Solomon Islands is noted.

216. Lebot, V. (1992). Genetic vulnerability of Oceania's traditional crops. <u>Experimental</u> <u>Agriculture 28(3), 309–323</u>.

The genetic reasons for the deterioration of the agronomic performance of traditional crops of Oceania, using information mostly derived from surveys of genetic resources conducted in more than 50 Pacific islands, coupled with genetic investigations, are reviewed.

217. Leonian, L. H. (1930). Differential growth of *Phytophthora* under the action of malachite green. <u>American Journal of Botany</u> 17, 671-677.

218. Liloqula, R. (1986). Crop protection services and problems in the Solomon Islands. In <u>UNDP/FAO/GTZ/IRETA Regional Crop Protection Workshop</u>. Apia, Western Samoa, 8–12 September 1986. (pp. 79–82). Suva, Fiji: UNDP.

In this description of crop protection services in the Solomon Islands, the control of taro leaf blight and the screening of local and foreign varieties for resistance are included in the list of priorities for the plant pathology section.

219. Liloqula, R. (1989). Taro breeding programmes. In <u>Annual Report 1986. Solomon</u> <u>Islands Government. Research Department, Agriculture Division, Ministry of</u> <u>Agriculture & Lands.</u> (pp. 35–36). Honiara, Solomon Islands.

Results of 2 trials to evaluate yielding ability of taro varieties resistant to taro leaf blight are reported.

 Liloqula, R., & Saelea, J. (1996). Taro disease situation in Solomon Islands. <u>Taro</u> <u>Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 57–61). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The importance of taro to agriculture in the Solomon Islands and diseases of the crop, including taro leaf blight, and their control are discussed.

221. Liloqula, R., Saelea, J., & Levela, H. (1996). The taro breeding programme in Solomon Islands. <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 143–147). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The breeding programme for taro diseases in the Solomon Islands, with special reference to the taro leaf blight back-crossing breeding programme, is described. Breeding work on nematode and virus resistance is also discussed and the future work programme outlined.

222. Liloqula, R., Saelea, J., & Levela, H. (1993). Traditional taro cultivation in the Solomon Islands. In <u>Proceedings of the Sustainable Taro Culture for the</u> <u>Pacific Conference.</u> University of Hawaii, 24–25 September 1992. (125– 131.). Honolulu, Hawaii: Hawaii Institute of Tropical Agriculture and Human Resources. HITAHR Research Extension Series No. 140.

In this discussion on the traditional cultivation of taro in the Solomon Islands, diseases, including *Phytophthora* blight, are considered.

- 223. Lin, C. K., & Liang, P. Y. (1965). Studies on nitrogen, calcium and organic acid requirements with reference to pH relations in the nutrition of some species of *Phytophthora*. <u>Acta Microbiologica Sinica</u> 11, 470–479.
- 224. Liyanage, A. d. S., & Misipati, P. (1995). Taro leaf blight (*Phytophthora colocasiae*). In <u>IRETA and SOA 1993 Annual Research Report</u> (pp. 60–63). Samoa: IRETA Publications, University of the South Pacific, Alafua Campus.

The outbreak of taro leaf blight in Samoa in 1993 is discussed. Symptoms of the disease, the pathogen, its spread and the susceptibility of all indigenous cultivars is considered.

- 225. Lucas, J. A., Shattock, R. C., Shaw, D. S., & Cooke, L. R. (1991). *Phytophthora*. (p. 447 pp.). Cambridge, UK: Cambridge University Press.
- 226. Luthra, J. C. (1938). India: some new diseases observed in Punjab and mycological experiments in progress during the year 1937. <u>International Bulletin of Plant Protection 8</u>(4), 73-74.
- 227. Macfarlane, R. (1996). Taro—a preliminary pest risk analysis. <u>Taro Leaf Blight</u> <u>Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 113–115). Noumea, New Caledonia: South Pacific Commission. Unpublished.

A preliminary PRA for taro in the Pacific region is presented. The occurrence of diseases and pests in different countries is tabulated and recommendations for the movement of taro between any two countries or territories summarised.

228. Macfarlane, R. (1985). Taro beetle (*Papuana uninodis*). <u>Annual report 1984</u>, <u>Research Department, Agriculture Division. (pp. 7–8). Honiara, Solomon</u> Islands: Ministry of Agriculture and Lands.

Four plant spacings (5000–40 000 plants/ha) were tested in the Solomon Islands for their effects on damage by *Papuana uninodis* on taro. Total yields increased and mean corm weights increased with planting density, but no significant differences in beetle damage were found. However, increased plant density was accompanied by increasing damage to the leaves by *Phytophthora colocasiae*.

229. Maheshwari, S. K., Sahu, A. K., & Misra, R. S. (1999). Efficacy of fungicides against *Phytophthora colocasiae* under laboratory conditions. <u>Annals of Plant</u> Protection Sciences 7(2), 228-229.

The efficacy of 9 fungicides against *P. colocasiae* under laboratory conditions was assessed. Of the fungicides tested Ridomil MZ (metalaxyl + mancozeb), Indofil M-45 (mancozeb), Blitox 50 (copper oxychloride) and Hill Copper (copper oxychloride) completely inhibited the growth of the pathogen. The remaining fungicides (Bavisitn (carbendazim), Borax, Kitazin (iprobenfos), streptocycline and Topsin-M (thiophanate-mtheryl)) inhibited the fungus to varying degrees.

230. Malaki, I., & Atkinson, W. (1998). Review of the taro trade and prospects in the South Pacific. Journal of South Pacific Agriculture 5(2), 23-30.

Taro trade is discussed, with particular reference to the role played by Fiji and Samoa. The devastating effect of taro leaf blight on taro trade by Samoa in 1993 is considered.

231. Manner, H. (1991). Report of a visit to Ulithi Atol. In A. M. Vargo (Compiler), <u>A</u> <u>Rapid Rural Appraisal of Taro Production Systems in Micronesia, Hawaii and</u> <u>American Samoa.</u> (pp. 147–153). Hawaii, USA: University of Hawaii.

Phytophthora colocasiae is reported as one of the most common problems on taro on Ulithi.

232. Manner, H. (1991). Report of the rapid rural assessment of taro production systems in Guam. In A. M. Vargo (Compiler), <u>A Rapid Rural Appraisal of Taro</u> <u>Production Systems in Micronesia, Hawaii and American Samoa.</u> (pp. 39– 55). Hawaii, USA: University of Hawaii.

A rapid rural appraisal of taro production on Guam is reported. *Phytophthora colocasiae* was identified on 15 farms but in general farmers did not perceive the disease to be a constraint to production.

- 233. Manrique, L. A. (1995). <u>Taro production principles and practices</u>, 215 pp. Honolulu, Hawaii: Manrigue International Agrotechnology.
- 234. Matanubun, H., & Paiki, F. A. (1996). Taro research in Irian Jaya: its present status and future. In <u>The Second Taro Symposium. Proceedings of an International</u> <u>Meeting.</u> Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 102–104).

Yield losses due to blight of up to 72% have been reported. None of the varieties in Irian Jaya were resistant and no control could be achieved by altering plant density or soil tillage practices. *Pseudomonas fluorescens, Bacillus subtilis* and *Gliocladium fimbriatum* controlled *Phytophthora colocasiae* both *in vitro* and *in vivo*. Metalaxyl was also more effective than Dithane M-45.

- 235. Mathur, P. N., & Paharia, K. D. (1964). Screening of *Colocasia* varieties for resistance to *Colocasia* blight (*Phytophthora colocasiae* Racib.). <u>Science and Culture</u> **30**(1), 44–46.
- 236. Matthews, P. J. (1998). Taro in Hawaii: present status and current research. <u>Plant</u> <u>Genetic Resources Newsletter (No. 116), 26–29.</u>

In this popular account, breeding work being carried out at Mauai Agricultural Research Centre, Hawaii, for blight resistance are briefly mentioned.

237. Mattos, J. K. d. A. (1994). Doencas da batata-doce, beterraba, cara, gengibre e inhame. [Diseases caused by fungi on sweet potato, beetroot, *Dioscorea* spp., ginger and yam.]. <u>Informe Agropecuario Belo Horizonte</u> 17(182), 25–28. In Portuguese.

Fungal diseases affecting sweet potato, beetroot, *Dioscorea* spp., ginger and yam in Brazil are briefly reviewed, including symptoms, susceptible cultivars, importance and control measures. The main diseases included *Phytophthora* colocasiae on yam.

238. McKenzie, E. H. C. (1996). Life cycle of *Phytophthora colocasiae* Racib. <u>Taro Leaf</u> <u>Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 75–81). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The taxonomy, host range, asexual life cycle and sexual reproduction in *Phytophthora colocasiae* is described. The origin of the pathogen and notes on how to distinguish *P. colocasiae* on taro and in culture are given. Finally a synoptic key to the 17 *Phytophthora* species recorded in the Pacific is provided.

239. McKenzie, E. H. C., & Jackson, G. V. H. (1986). The fungi, bacteria and pathogenic algae of Solomon Islands. <u>RAS/83/001</u> (Field Document No. 11), 206–207.

A report produced as part of the FAO/SPC Strengthening Plant Protection and Root Crops Development in the South Pacific project. *Phytophthora colocasiae* is recorded as present in the Solomon Islands. The biology of the pathogen is briefly outlined.

240. McKenzie, E. H. C., & Jackson, G. V. H. (1990). The fungi, bacteria and pathogenic algae of the Republic of Palau. <u>SPC Technical Paper (No. 198)</u>, 28–29.

Phytophthora colocasiae is recorded as present in Palau.

- 241. McRae, W. (1934). Foot-rot disease of Piper betle L. in Bengal. <u>Indian Journal of Agricultural Science 4(4)</u>, 585-617.
- 242. Mendiola, N., & Espino, R. B. (1916). Some Phycomycetous diseases of cultivated plants in the Philippines. <u>Philippine Agriculture and Forestry</u> 5, 67–72.

Cited in Tucker, 1933.

- 243. Mirza, R., Kafi, A., & Huque, A. (1965). List of plant diseases recorded in Pakistan. <u>Technical Document, FAO Plant Protection Commission in South East Asia</u> 43, 1–17.
- 244. Misra, R. S. (1995). Effect of dates of planting on *Phytophthora* blight severity and tuber yield in *Colocasia*. Journal of Root Crops **21**(2), 111–112.

A field trial was conducted over a 3 year period in Bhubaneswar, Orissa, India, to determine the effects of planting date of *C. esculenta* on disease severity caused by *P. colocasiae* and tuber yield. Five dates of planting starting from May 1, at intervals of 15 days were used as treatments. Planting on May 1 and May 15 resulted in higher yields compared with the other dates. However, the percentage of plants infected, the percentage leaf area damaged and the percentage of disease intensity were also higher on crops planted on these dates. It is suggested that the early planted crops were mature at the time of infection whereas the later planted crops were still developing at the time of infection.

245. Misra, R. S. (1996). A note on zoosporogenesis in *Phytophthora colocasiae*. Indian <u>Phytopathology</u> 49(1), 80-82.

A brief report on zoosporangial morphology and germination of *P. colocasiae* (the causal agent of leaf blight in *Colocasia esculenta* and *C. antiquorum*) is given.

- 246. Misra, R. S. (1994). In <u>Phytophthora</u> diseases of Horticultural Crops. Proceedings of the National Group Meeting on *Phytophthora* diseases of Horticultural Crops. Calicut, India, 22–23 September.
- 247. Misra, R. S. (1996). Prevalence and assessment of yield losses caused by *Phytophthora* leaf blight in *Colocasia* in Northern and Eastern parts of India. In G. T. Kurup, M. S. Palaniswami, V. P. Potty, G. Padmaja, S. Kabeerathumma, & S. V. Pillai (Editors), <u>Tropical tuber crops: problems</u>, <u>prospects and future strategies.</u> (pp. 380–387). Lebanon, New Hampshire, USA: Science Publishers, Inc.

An extensive survey of major *Colocasia* growing areas in the states of Orissa, West Bengal, Bihar and Uttar Pradesh in northern and eastern parts of India was undertaken during 1988 and 1989 to record the incidence of leaf blight, caused by *P. colocasiae*. Out of 128 representative fields of *Colocasia* visited during the 1988 monsoon season, 94% of fields were infected by leaf blight, and 78.38% fields had >80% incidence. During 1989, of 164 fields visited 92% showed blight infection and 81.75% of fields showed >80% incidence. A strong positive correlation existed between disease severity and yield loss (r=0.867 and 0.84 in farmers field and experimental farm, respectively). A corresponding negative correlation existed between disease severity and tuber yield (r=0.884 and -0.661 in the farmers' field and experimental farm, respectively). In the farmers' fields a mean yield loss of 33.64% was recorded due to leaf blight, whereas in the experimental farm 50.39 and 26.26% mean yield losses were recorded in susceptible and tolerant cultivars, respectively due to blight.

- 248. Misra, R. S. (1993). Prevalence and assessment of yield losses of *Phytophthora* blight of *Colocasia* in the Northern and Eastern parts of India. In <u>Proceedings of the International Symposium on Tropical Tuber Crops.</u> Trivandrum.
- 249. Misra, R. S. (1991). Prevalence of *Phytophthora* leaf blight of *Colocasia* in Northern and Eastern India. <u>Phytophthora Newsletter</u> (No. 17), 36.

In 1988 and 1989, 94% and 92%, respectively, of fields were found to be infected with blight, with 78% and 81%, respectively, showing more than

80% incidence. Yield losses of 50-60% are estimated. A high degree of resistance in a local variety 'Jankhri' is reported.

- 250. Misra, R. S. Studies of *Phytophthora* leaf blight of *Colocasia*. In <u>Annual Report</u> <u>1990–91</u>. Trivandrum, India: Central Tuber Crops Research Institute.
- 251. Misra, R. S. (1993). Yield losses in *Colocasia* caused by *Phytophthora* leaf blight. <u>Phytophthora Newsletter</u> 19, 16–17.

Tuber yield losses due to *Phytophthora colocasiae* were assessed in Orissa, India. In farmers' fields a mean yield loss of 34% was recorded at the experimental farm, 50% and 26% in susceptible and tolerant varieties, respectively.

252. Misra, R. S., & Chowdhury, S. R. (1996). *Phytophthora* leaf blight of taro: effect on dry matter production. Journal of Root Crops **22**(1), 54–57.

Phytophthora leaf blight of taro (*Colocasia esculenta*) appeared early and progressed fast in susceptible cultivars compared with tolerant ones. The effect of leaf blight on dry matter production was more pronounced in susceptible cultivars, and fungicide sprays increased dry matter accumulation (measured as crop growth rate) in susceptible cultivars. Crop growth rate was least influenced by leaf blight in the tolerant cultivar Jankhri, in which fungicidal spraying did not increase dry matter accumulation. Use of the tolerant cultivar without using fungicides is advocated to minimise the yield losses caused by *Phytophthora*.

253. Misra, R. S., & Singh, D. P. (1991). Resistance in *Colocasia* against *Phytophthora* blight and progress of the disease in selected cultivars. <u>Phytophthora</u> <u>Newsletter</u> 17, 36–37.

Of the 43 cultivars screened in Bhubaneswar, India, 4 (Muktakeshi, Mahasaru, Jankhri and Topi) showed a high level of resistance to taro leaf blight. All other cultivars were moderately to highly susceptible to the disease, with cultivars Telia and Barnandi the most susceptible.

254. Misra, R. S., & Singh, D. P. (1991). Varietal resistance in *Colocasia* against *Phytophthora* leaf blight and progress of the disease in selected cultivars. <u>Phytophthora Newsletter</u> (No. 17), 36–37.

Of 43 cultivars tested in 1988 and 1989, the following showed a high degree (<10% taro leaf blight) of resistance: Jankhri, Nahasaru, Muktakeshi and Topi.

255. Moles, D. J., Rangai, S. S., Bourke, R. M., & Kasamani, C. T. (1984). Fertilizer responses of taro in Papua New Guinea. In S. Chandra (Editor), <u>Edible Aroids</u> (pp. 64–71). Oxford, UK: Clarendon Press. Shortage of land of suitable fertility and *Phytophthora colocasiae* are identified as reasons for the reduction of area under taro in Papua New Guinea.

- 256. Muthappa, B. N. (1987). Records of microorganisms in Papua New Guinea 1977– 1986. <u>Department of Agriculture and Livestock</u>, Port Morseby, Research <u>Bulletin (No. 43)</u>, 72 pp.
- Narula, K. L., & Mehrotra, R. S. (1987). Biocontrol potential of *Phytophthora* leaf blight of *Colocasia* by phylloplane microflora. <u>Indian Phytopathology</u> 40(3), 384–389.

Two bacteria, 3 actinomycetes and 4 fungi showed antagonistic potential against *P. colocasiae in vitro*. *In vivo*, the bacteria reduced disease incidence by 37-43%. *Streptomyces albidoflavus* reduced percentage infection by 90–93% and *S. diastaticus* by 76%. Among the fungi, *Botrytis cinerea* gave the best control (33% reduction).

- 258. Narula, K. L., & Mehrotra, R. S. (1984). The epidemiology of *Phytophthora* leaf blight of *Colocasia*. <u>Proceedings, National Academy of Sciences, India, Section B—Biological Sciences</u> 54(3), 227–235.
- 259. Narula, K. L., & Mehrotra, R. S. (1980). Occurrence of A1 mating type of *Phytophthora colocasiae*. Indian Phytopathology **33**(4), 603-604.

The mating type was isolated from *Colocasia antiquorum* var. esculenta (C. esculenta var. antiquorum) from 3 North Indian states.

Narula, K. L., & Mehrotra, R. S. (1981). Phylloplane microflora of Colocasia esculenta (L.) Schott in relation to Phytophthora colocasiae Racib. Geobios 8(4), 152–156.

Alternaria spp., the most abundant on young and mature leaves, were replaced on senescent ones by *Cladosporium cladosporioides*, *Penicillium rubrum*, *P. chrysogenum*, *Botrytis cinerea*, and *Myrothecium roridum*. Three *Streptomyces* spp. and 2 bacterial isolates were antagonistic to *P. colocasiae* in dual culture plates.

261. Narula, K. L., & Mehrotra, R. S. (1989). Phytophthora blight of Colocasia---control with antibiotics and selective fungicides. Indian Phytopathology 42(2), 328.

An abstract of a paper presented at the Proceedings of 41st Annual Meeting of Indian Phytopathological Society, held in New Delhi 28 February, 1989 to 2 March, 1989.

- 262. Narula, K. L., & Mehrotra, R. S. (1984). Saprophytic survival of *Phytophthora* colocasiae in soils. <u>Indian Phytopathology</u> 37(2), 256–261.
- 263. Naskar, S. R. (1989). Evaluation of taro varieties under rainfed conditions in Orissa. Journal of Root Crops 15, 59–60.

- 264. Newton, K., & Jamieson, G. I. (1968). Cropping and soil fertility studies at Keravat, New Britain. <u>Papua New Guinea Agricultural Journal</u> 20, 1–2.
- 265. Ngiralmau, M., & Bishop, R. (1991). A report on the rapid rural appraisal of *Colocasia* taro agriculture in Palau. In A. M. Vargo (Compiler), <u>A Rapid</u> <u>Rural Appraisal of Taro Production Systems in Micronesia, Hawaii and</u> <u>American Samoa.</u> (pp. 97–111). Hawaii, USA: University of Hawaii.

A rapid rural appraisal of taro production in Palau carried out in 1990 is reported. Taro leaf blight was prevalent but was not considered serious by farmers.

266. O'Connor, B. A. (1967). <u>Exotic plants and diseases</u>. Noumea, New Caledonia: South Pacific Commission.

Included in this book is a datasheet on the distribution, symptoms, spread and damage, and control of taro leaf blight (one page).

267. Okpul, T. (1999). Taro (*Colocasia esculenta*) breeding in Papua New Guinea. In <u>Annual Report for 1998.</u> (pp. 92–95). Taro Network for South-East Asia and Oceania (TANSAO).

Progress with taro breeding, including that for blight resistance, in Papua New Guinea is reported.

 Okpul, T., Ivancic, A., & Simin, A. (1997). Evaluation of leaf blight resistant taro (*Colocasia esculenta*) varieties for Bubia, Morobe province, Papua New Guinea. <u>Papua New Guinea Journal of Agriculture, Forestry and Fisheries</u> 40(1-2), 13-18.

Taro (*Colocasia esculenta*) varieties (35) resistant to taro leaf blight (TLB) (*Phytophthora colocasiae*) were evaluated at Bubia Agricultural Research Centre, Lae, Papua New Guinea, for yield components and eating quality in comparison with the locally preferred cultivar, Numkowec. The main factors affecting eating quality were presence of conspicuous corm fibre and acridity. Leaf blight resistant varieties AN 65, 17, 50, 32, 46, 21, 12 and AN 20 had acceptable eating quality. Their corm yield ranged from 300 g/plot (AN 50) to 570 g/plot (AN 21). However, their corm yield was not significantly different from that of Numkowec (430 g/plot). These resistant varieties are recommended to farmers in the Lae area based on their resistance to TLB and their similarities in corm yield and eating quality to Numkowec.

- 269. Oliver, D. (1973). <u>Bougainville: a personal history</u>. Melbourne, Australia: Melbourne University Press.
- 270. Onwueme, I. C. (1978). Harvesting, storage, diseases, and pests of cocoyams. In <u>The tropical tuber crops. Yams, cassava, sweet potato, cocoyams.</u> (pp. 215–219). UK: John Wiley & Sons.

In this chapter, diseases of taro, including blight, are briefly described.

 Onwueme, I. C., & Charles, W. B. (1994). Tropical root and tuber crops: production, perspectives and future prospects. <u>FAO Plant Production and Protection</u> <u>Papers</u> (No. 126), 153–154.

> In this chapter on harvesting, storage, diseases and pests of cocoyams, taro blight is described and control measures outlined.

272. Ooka, J. J. (1983). Taro diseases. In J. K. Wang (Editor), <u>Taro. A review of</u> *Colocasia esculenta* and its potentials. (pp. 236–257). Honolulu, Hawaii: University of Hawaii Press.

This chapter includes discussion of taro leaf blight and its control.

273. Ooka, J. J. (1990). Taro diseases. In <u>Proceedings of taking taro into the 1990s: a taro conference.</u> Komohana Agricultural Complex, Hilo, Hawaii, 17 August 1989. (pp. 51–59). Honolulu, Hawaii: University of Hawaii. Research Extension Series, Hawaii Institute of Tropical Agriculture and Human Resources No. 114.

Although taro [Colocasia esculenta] is susceptible to attack by at least 23 pathogens, only a few cause serious reduction in growth and production. *Phytophthora* blight (*P. colocasiae*) and *Pythium* root and corm rot are the most serious fungal diseases of *C. esculenta*. Dithane-M45 [mancozeb] is available for control of *Phytophthora* blight.

- 274. Ooka, J. J. (1994). <u>Taro diseases. A guide for field identification</u>. Honolulu, Hawaii, USA: University of Hawaii. HITAHR Research Extension Series No. 148.
- 275. Ooka, J. J., & Trujillo, E. E. (1984). Taro diseases and their control. In M. Lambert (Editor), <u>Taro Cultivation in the South Pacific</u> (pp. 52–66). Noumea, New Caledonia: South Pacific Commission. SPC Handbook No. 22.

This chapter includes a description of taro leaf blight, its symptoms and control.

276. Packard, J. C. 144 pp. Honolulu, Hawaii: University of Hawaii. Miscellaneous work papers (University of Hawaii, Pacific Islands Studies Program).

This is a reproduction of an MA thesis with minor revision.

- 277. Packard, J. C. (1974). <u>The history of the Bougainville taro blight.</u> Unpublished doctoral dissertation, University of Hawaii at Manoa, Honolulu, Hawaii. Thesis for Master of Arts in History, no. 1152.
- 278. Paharia, K. D., & Mathur, P. N. (1961). New host plant of *Colocasia* blight (*Phytophthora colocasiae* Rac.). <u>Current Science (Bangalore)</u> **30**(9), 354.
- Paharia, K. D., & Mathur, P. N. (1964). Screening of *Colocasia* varieties to *Colocasia* blight (*Phytophthora colocasiae*). <u>Current Science (Bangalore)</u> 30(1), 44-46.

Twenty cultivars were screened for resistance to taro leaf blight One was considered immune (Poonampat), one resistant (Sakin V), 7 moderately resistant and 11 susceptible. Results are tabulated.

- 280. Paiki, F. A. (1988). Identifikasi *Phytophthora* dan *Pythium* pada talas (*Colocasia* esculenta) dan pengaruh beberapa caru budidaya serta fungisida Metalaxyl terhadap perkembangan penyakit hawar daun danbusuk umbi. [Identification of *Phytophthora* and *Pythium* on taro (*Colocasia esculenta*) and the effect of cultivation techniques including metalaxyl fungicide towards the development of leaf blight and corm rot. Unpublished report of the Faculty of Postgraduate Studies, Bogor Agricultural Institute.
- 281. Paiki, F. A. (1993). Pathogenicity of *Phytophthora* and *Pythium* on taro (*Colocasia esculenta*) in Irian Jaya. <u>Book of Abstracts. The First Taro Symposium.</u> Lae, Papua New Guinea, 25 October 1993. (p. 13). Lae, Papua New Guinea: University of Technology.

Taro leaf blight in Irian Jaya is described. Metalaxyl gave good control of the disease.

282. Paiki, F. A. (1996). Symptoms of taro leaf blight disease (*Phytophthora colocasiae*) and relationship with yield components in Biak, Irian Jaya. <u>Science in New Guinea</u> 21(3), 153–157.

P. colocasiae causes leaf blight and rot on taro flowers, petioles, stem bases and corms in Irian Jaya. Significant symptoms of leaf blight and corm decay were always found on the same plant. Disease intensity on monoculture cropping systems was higher than on mixed cropping systems. Leaf blight disease intensity showed a linear relationship with yield components. An increase in disease intensity was followed by a reduction of the corm weight/crop.

- 283. Paiki, F. A., & Erari, D. K. (1985). Ketahanan klon-klon talas terhadap panyakit bercak daun (*Phytophthora colocasiae*). [The resistance of taro clones to taro leaf blight (*Phytophthora colocasiae*). Unpublished report of the Faculty of Agriculture UNCEN, Manokwarai.
- 284. Paiki, F. A., & Ruimassa, R. (1996). Identification of fungi attacking taro leaves. In <u>The Second Taro Symposium. Proceedings of an International Meeting.</u> Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23– 24 November 1994. (p. 124).

In this poster, taro leaf blight was identified as one of the fungal diseases infecting taro in Irian Jaya. All varieties were affected and infection was evident when the plants were 8 months-old.

285. Palomar, M. K. (1981). Evaluation techniques for disease resistance in root crops. In Southeast Asian and the Pacific Training Course on Root and Tuber Crops <u>Germplasm Evaluation and Utilization</u> (pp. 252–263). Leyte, Philippines: Visayos State College of Agriculture.

286. Pardales, J. R. (1999). Past, present and future research and development activities on taro in the Philippines. In <u>Annual Report for 1998</u>. (pp. 6–24). Taro Network for South-East Asia and Oceania (TANSAO).

> It is reported that the variety VG-2 (Iniito) and two promising selections from the germplasm collections in the Philippines were sent to Western Samoa following the outbreak of taro leaf blight. Iniito is reported to be growing well in Samoa.

- 287. Pardales, J. R., & Villanueva, M. R. <u>Cultural management for lowland taro under</u> <u>monoculture system in the Phillipines</u>.
- Pardales, J. R., Villanueva, M. R., & Cotejo, F. R. (1982). Performance of taro under lowland conditions as affected by genotype, nutritional status and population density. <u>Annual Tropical Research</u>, 156–167.
- 289. Parham, B. E. V. (1949). Country paper Fiji. In <u>Annual Report of the Economic</u> <u>Botanist for the Year ending 1948.</u> (pp. 24, 31–35). Journal of the Legislative Council, Fiji, Council Paper No. 24.
- 290. Parham, B. E. V. (1947). Ecomomic botany notes. 3. Disease of taro. <u>Agriculture</u> Journal (Fiji) 18(3), 80.

A disease of taro is reported from the British Solomon Islands Protectorate in July 1946. Although the disease was originally thought to be caused by a virus, the causal organism was identified as *Phytophthora colocasiae*.

291. Park, M. (1939). Report on the work of the Division of Plant Pathology. In <u>Administrative Report of the Director of Agriculture, Ceylon for 1937.</u> (p. D42–D48). Ceylon.

> *Phytophthora colocasiae* is reported for Ceylon [Sri Lanka] for the first time. The fungus was found on *Alocasia* sp.

292. Parris, G. K. (1941). Diseases of taro in Hawaii and their control. <u>Circular</u> (University of Hawaii, Hawaii Agricultural Experiment Station), (No. 18), 29 pp.

A description of taro leaf blight is included in this leaflet.

- 293. Patel, M. Z. (1984). Progress report on breeding work in Solomon Islands. <u>FAO/SPC</u> <u>Root Crop Breeding and Germplasm Workshop.</u> Suva, Fiji, 29 October–2 November 1984. (6 pp.). Unpublished meeting paper.
- 294. Patel, M. Z., & Liloqula, R. (1985). Leaf blight disease (*Phytophthora colocasiae*). Annual Report 1984 (Solomon Islands, Ministry of Agriculture and Lands,

<u>Agriculture Division, Research Department</u>) (pp. 8–12). Honiara, Solomon Islands.

Progress in breeding for taro leaf blight is reported.

295. Patel, M. Z., & Liloqula, R. (1985). Progress on breeding disease resistant taro in Solomon Islands. In <u>Fifth Conference of the Australasian Plant Pathology</u> <u>Society.</u> Auckland, New Zealand, 20–24 May 1985. (p. p. 53).

> In this poster progress in the breeding programme initiated in 1979 is described. The programme reached the third backcross generation. Results of yield trials are presented. Resistance to taro leaf blight was found to be controlled by a single dominant gene, so additional sources of resistance have been sought from India and South East Asia. Possible approaches to combine resistance from various sources are discussed.

296. Patel, M. Z., & Liloqula, R. (1986). Progress on breeding disease resistant taro in the Solomon Islands. In <u>UNDP/FAO/GTZ/IRETA Regional Crop Protection</u> <u>Workshop.</u> Apia, Western Samoa, 8–12 September, 1986. (133–151.). Suva, Fiji: UNDP.

Progress in the breeding programme initiated in 1979 is described. The programme has reached the third backcross generation. Results of yield trials are presented. Resistance to taro leaf blight was found to be controlled by a single dominant gene, so additional sources of resistance have been sought from India and South East Asia. Possible approaches to combine resistance from various sources are discussed.

297. Patel, M. Z., & Liloqula, R. (1987). Taro breeding programme. <u>Solomon Islands</u> <u>Government, Research Department, Agriculture Division, Ministry of</u> <u>Agriculture and Lands, Annual Report 1995</u> (pp. 10–11). Honiara, Solomon Islands: Dodo Creek Research Station.

The breeding programme for resistance to *Phytophthora colocasiae* and *Hirschmanniella miticausa* in the Solomon Islands is briefly described.

298. Patel, M. Z., Saelea, J., & Jackson, G. V. H. (1984). Breeding strategies for controlling diseases of taro in Solomon Islands. In <u>Proceedings: sixth</u> <u>symposium of the International Society for Tropical Root Crops, Lima, Peru.</u> Lima, Peru, 21–26 February, 1983. (pp. 143–149). Lima, Peru: International Potato Center.

Resistance to leaf blight caused by *Phytophthora colocasiae* was found in a wild taro (*Colocasia esculenta*) accession introduced from Thailand and designated Bangkok. F1 and BC1 data from crosses between Bangkok and local cultivars indicated that resistance is controlled by a single dominant gene.

- 299. Patiasina, J. W., Karafir, J. P., Killian, A. M., & Paiki, F. A. (1981). Preliminary study on the control of taro leaf blight in Irian Jaya. Manokwari, Indonesia: Faculty of Agriculture, Cenderawasih University.
- Paulson, D. D., & Rogers, S. (1997). Maintaining subsistence security in Western Samoa. <u>Geoforum (No. 28)</u>, 173–187.

In this discussion, the effect of taro leaf blight on food security in Samoa is considered.

301. Pena, R. S. d. l. (1989). Development of new taro varieties through breeding. In J. R. Hollyer, & D. M. Sato (Editors), <u>Taking taro into the 1990s.</u> (pp. 32–36). Honolulu, Hawaii: University of Hawaii.

> Some of the advantages, problems and a general method of hybridizing taro are discussed. It is stressed that an organised crop improvement programme through breeding should be established and supported.

- 302. Pena, R. S. d. l. (1978). Upland taro. <u>Home Garden Vegetable Series</u>, Chap. No. 18,
). Hawaii, USA: Hawaii Cooperative Extension Service, University of Hawaii.
- 303. Peregrie, W. T. H. (1971). Annual Report of the Plant Pathologist, Brunei, 1970.
- 304. Petch, T. (1918). Fungus diseases of food crops in Ceylon. <u>Tropical Agriculture</u> 50, 159–163.

Cited in Tucker 1933.

305. Philemon, E. C. (1997). An overview of the pathology of genus *Colocasia*. <u>Papua</u> <u>New Guinea Journal of Agriculture, Forestry and Fisheries.</u> **37**(2), 53–61.

> Information available from various sources, which relates to diseases of taro in Papua New Guinea, is reviewed.

- 306. Philemon, E. C., & Hyde, K. (1990). <u>Plant diseases of Western Province in Papua</u> <u>New Guinea: a survey report</u>, 107 pp.
- 307. Pillai, S. V., & Thankappan, M. (1991). Breeding for leaf blight resistance in taro: problems and prospects. <u>Journal of Root Crops</u> 17, 57–61. (ISRC National Symposium Special).
- 308. Pillai, S. V., Thankappan, M., & Misra, R. S. (1996). Intervarietal hybridization for induction of resistance to leaf blight in taro. In G. T. Kurup, M. S. Palaniswami, V. P. Potty, G. Padmaja, S. Kabeerathumma, & S. V. Pillai (Editors), <u>Tropical tuber crops: problems, prospects and future strategies.</u> (pp. 164–168). Lebanon, New Hampshire, USA: Science Publishers, Inc.

Four *Phytophthora colocasiae* leaf blight tolerant taro (*Colocasia esculenta*) cultivars and their open pollinated progenies were selfed and intercrossed to

isolate resistant recombinants from the segregating generations. The highest numbers of resistant genotypes were obtained from selfed tolerant lines, followed by open pollination of progenies of tolerant lines. A high proportion of second generation hybrids of tolerant cultivars also showed resistance. Selfed susceptible genotypes did not produce resistant lines, whereas crosses involving different susceptible lines gave a low percentage of resistant progeny. Genotypes with combined resistance, high yields and good cooking quality were identified. From a third cycle of segregating generations, 4 genotypes were identified with a high degree of resistance under field conditions and after artificial inoculation.

309. Pillai, S. V., Thankappan, M., & Misra, R. S. (1993). Leaf blight resistant hybrids of taro. Journal of Root Crops 19(1), 66-68.

Of 270 *Colocasia esculenta* seedlings screened for natural resistance to leaf blight, caused by *Phytophthora colocasiae*, in the field at Trivandrum, India, 119 lines were resistant.

310. Po KiHo, & Ramsden, L. (1998). Mechanisms of taro resistance to leaf blight. <u>Tropical Agriculture</u> 75(1/2), 39-44.

Five taro cultivars and 2 related aroids were screened for the induction of pathogenesis-related proteins in reponse to infection by *Phytophthora colocasiae*. Infected plants showed increased levels of PR proteins but this did not correlate with resistance in the most susceptible cultivars. Despite high levels of PR proteins, these cultivars were unable to prevent infection. Successful resistance in other plants was more closely linked to the pattern of expression of proteinase inhibitors, which appear to be an important defence strategy in taro and related aroids.

311. Pone, S. (1996). Taro leaf blight—a regional approach. In <u>The Second Taro</u> <u>Symposium. Proceedings of an International meeting.</u> Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 86–90).

A Taro Leaf Blight Network for the South Pacific is proposed. The Network will involve collaboration between scientists within Pacific island countries and international organizations and institutes outside the region. The aims of the Network are to assist in the development of alomae and bobone virustesting techniques, identification of molecular markers for taro leaf blight resistance genes, breeding of taro leaf blight resistant varieties and the mass production and distribution of pathogen-indexed taro plantlets through tissue culture to member countries. Support will also be given to other taro leaf blight control measures. A meeting to formally launch the Network was planned for 8–12 May 1995. Names and addresses of contact people are given.

312. Pouono, K., & Hunter, D. G. (1988). Taro breeding and research in Samoa. In <u>Proceedings of the Taro Breeding Workshop.</u> Suva, Fiji Islands, 26–28 August 1998. (pp. 9–10). Noumea, New Caledonia: Secretariat of the Pacific Community. AusAID/SPC Taro Genetic Resources: Conservation and Utilisation.

313. Pouono, K., & Tuugasala, S. (1996). The incidence of taro leaf blight (*Phytophthora colocasia*) in relation to rainfall in Western Samoa: a progress report. In <u>Mineral nutrient disorders of root crops in the Pacific: Proceedings of a workshop</u>. Nuku'alofa, Kingdom of Tonga, 17–20 April 1995. (pp. 137–139). ACIAR Proceedings No. 65.

This paper presents preliminary findings on the interrelationships between rainfall, incidence of leaf blight [*Phytophthora colocasiae*], growth, yield and corm quality of taro on Upolu Island in Western Samoa. Disease incidence was positively related to rainfall and plant age.

314. Prana, M. S. (1999). Past, present and future R&D programmes on taro (*Colocasia esculenta*) in Indonesia. In <u>Annual Report for 1998</u> (pp. 50–61). Taro Network for South-East Asia and Oceania (TANSAO).

Taro research in Indonesia is reported. Problems with isolating *Phytophthora colocasiae* from taro are outlined. However, it is reported that 4 successful isolations were made and these will be sent to France for molecular analysis.

- 315. Price, T. V. (1978). Pathosystem analysis of taro blight in Papua New Guinea. In <u>Epidemiology and crop loss assessment. Proceedings of a workshop.</u> Lincoln College, Canterbury, New Zealand., 29–31 August, 1997.
- 316. Primo, A. (1993). Colocasia taro on Pohnpei Island. In Proceedings of the Sustainable Taro Culture for the Pacific Conference. University of Hawaii, Honolulu, 24–25 September 1992. (pp. 6–8). Hawaii: Hawaii Institute of Tropical Agriculture and Human Resources. HITAHR Research Extension Series No. 140.

Research into the control of *Phytophthora* blight of taro is highlighted as a future research need for taro in Pohnpei.

- 317. Purwanti, H. (1986). Ketahanan talas terhadap hawar daun (*Phytophthora colocasiae*). <u>Penelitian Pertanian 4</u>, 5–7.
- 318. Purwanti, H. (1986). Ketahanan varietas talas terhadap penyakit hawar daun (*Phytophthora colocasiae*). (Resistance of taro (*Colocasia esculenta*) varieties to leaf blight (*Phytophthora colocasiae*)). <u>Penelitian Pertanian (Indonesia)</u> 6(1), 5–7.
- 319. Putter, C. A. J. Disease resistance in plants and its role in crop production strategy and tactics in Papua New Guinea. In <u>Proceedings of the First Papua New</u> <u>Guinea Food Crops Conference</u>. Port Morseby, Papua New Guinea.
- 320. Putter, C. A. J. (1980). The management of epidemic levels of epidemic diseases under tropical subsistence farming conditions. In J. Palti, & J. Kranz

(Editors), <u>Comparative Epidemiology: a tool for better disease management</u> (pp. 93–103). Wageningen, Netherlands: CTA.

The epidemic patterns of temperate and tropical plant pathogens are contrasted in a comparison of diseases caused by 2 species of *Phytophthora*, *P. infestans* and *P. colocasiae*. Disease and control strategies for the 2 epidemic patterns are compared. Epidemicity is proposed as a paradigm of tropical epidemiology and its implications for disease control are discussed. The socio-economic and ecological constraints imposed on pathosystem management in developing countries are evaluated and an attempt is made to formulate a control strategy for tropical diseases.

321. Putter, C. A. J. (1976). <u>Phenology and epidemiology of Phytophthora colocasiae</u> Racib. on taro in the East West Province, Papua New Guinea. Unpublished doctoral dissertation, University of Papua New Guinea, Faculty of Science.

In this thesis, the taro leaf blight pathosystem is described and analysed and management of the pathosystem considered.

322. Putter, C. A. J. (1993). <u>Some epidemiological explanations to guide the design of taro</u> <u>blight resistance evalutation experiments</u>, unnumbered. Rome, Italy: FAO. FAO unpublished report.

Techniques to be used for evaluating taro blight resistance in varieties are considered.

323. Putter, C. A. J. (1993). <u>Some thoughts on taro improvement in the Pacific</u>, 12 pp. FAO unpublished report.

The taro blight epidemic in Samoa is discussed and a general taro improvement programme is suggested that could be adopted and implemented as a crop improvement network approach in the Pacific.

324. Putter, C. A. J. (1993). <u>Taro blight (Phytophthora colocasiae</u>) in Western Samoa, 24 pp. FAO Mission Report TCP/SAM/2353.

In this report, details of a training workshop on the biology and epidemiology of taro blight held in 1993 are given and an assessment of the current situation and recommendations for an integrated disease management strategy made.

325. Quevedo, M. A., Sanico, R. T., & Baliad, M. E. (1991). The control of post-harvest diseases of taro corms. <u>Tropical Science</u> **31**(4), 359–364.

Results of trials of pre- and postharvest control measures for the control of postharvest decay of taro are reported. Benlate dips and packing taro corms delayed decay.

 Quitugua, R. J., & Trujillo, E. E. (1998). Survival of *Phytophthora colocasiae* in field soil at various temperatures and water matric potentials. <u>Plant Disease</u> 82(2), 203-207.

> The survival of zoosporangia of P. colocasiae, isolated from Colocasia esculenta and produced on V8 agar, mixed with soil and stored at 3 soil water matric potentials and 4 temperatures was studied. A large number of the zoosporangia germinated by zoospore discharge and/or lysed in the soil during the first 5 days of incubation, decreasing the initial number of colonyforming units (c.f.u.) from 1X104 to 1X102 per g of soil in all treatments. Eighteen days after incorporation, the viable zoosporangia present in moist soils had thickened their cell walls and germinated only directly (i.e., germinated by germ tube and hyphal production), often producing smaller zoosporangia. A few thick-walled chlamydospores were observed and they germinated only directly. Zoosporangia in soils at -1500 J/kg matric potential survived longer than 107 days and the amount of viable zoosporangia present at that time was approximately 0.1X102 c.f.u./g of soil. The majority of the thin-walled zoosporangia produced on V8 agar, when incorporated into moist soil, germinated indirectly (i.e., by zoospore release) in the first 5 days of incubation. Zoosporangia that did not germinate became resting zoosporangia by increasing their wall thickness or by producing chlamydospores. These enabled the pathogen to survive in soil at -1500 J/kg matric potential for more than 3 months. However, in the absence of the host, the pathogen is predicted to survive less than 1 year due to its lack of saprophytic ability to colonize non host tissues.

- 327. Quitugua, R. J., & Trujillo, E. E. (1997). Taro leaf blight evaluations of 30 different taro cultivars (*Colocasia esculenta*) produced in tissue culture. [Abstract]. <u>Proceedings of the College of Arts and Science Conference.</u> University of Guam.
- 328. Raciborski, M. (1900). Parasitic algae and fungi. Java Batavia Bulletin 19, 189.

First report of the taro leaf blight pathogen in Java.

329. Ragus, L. (1991). Rapid rural appraisal of taro agriculture in the Commonwealth of the Northern Mariana Islands. In A. M. Vargo (Compiler), <u>A Rapid Rural</u> <u>Appraisal of Taro Production Systems in Micronesia, Hawaii and American</u> <u>Samoa. (pp. 81–94). Hawaii, USA: University of Hawaii.</u>

A rapid rural appraisal in the Northern Mariana Islands is reported. *Phytophthora colocasiae* was identified on Rota and Tinian.

330. Rajesh Kumar, & Dubey, S. C. (1996). Screening of *Colocasia* genotypes for resistance to *Phytophthora* leaf blight. In G. T. Kurup, M. S. Palaniswami, V. P. Potty, G. Padmaja, S. Kabeerathumma, & S. V. Pillai <u>Tropical tuber crops:</u> problems, prospects and future strategies. (pp. 388–390). Lebanon, New Hampshire, USA.: Science Publishers, Inc.

Fifteen genotypes of *C. esculenta* were screened for resistance to leaf blight caused by *Phytophthora colocasiae*. Genotype C189 had the highest infection rate (53.9%) as well as disease intensity (52.7%). Telia had the highest leaf infection (26.6%). Highly restricted disease symptoms were observed in Jhangdi and Topi. No symptoms or infections were observed in Kadma local, Muktakeshi or Nadia local. These genotypes showed immune reactions to blight.

331. Rangai, S. S. (1982). Preliminary results of a survey of taro (Colocasia esculenta) cultivation on the Gazelle Peninsula of New Britain. In <u>Proceedings of the Second Papua New Guinea Food Crops Conference</u>. Port Moresby, Papua New Guinea, 14–18 July, 1980. (pp. 123–133). Port Moresby, Papua New Guinea: Department of Primary Industy.

In a survey of growers, taro leaf blight was rated as a serious problem in taro production. A decline in the number of varieties grown is noted and it is suggested that this is due to the presence of blight.

332. Rangi, S. S. (1993). The vanishing status of taro. In <u>Book of Abstracts. The First Taro</u> <u>Symposium.</u> Lae, Papua New Guinea, 25 October 1993. (p. 21). Lae, Papua New Guinea: University of Technology.

> The decline of taro production in Papua New Guinea, and the role of taro leaf blight in this decline, are discussed. Breeding for disease resistance is considered to be important in order to combat genetic erosion.

333. Rao, V. R. (1996). Taro genetic resources: conservation and use. In <u>The Second Taro</u> <u>Symposium. Proceedings of an International Meeting.</u> Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 19–28).

In this discussion the importance of considering taro leaf blight and taro viruses when conserving taro germplasm is outlined.

334. Rao, V. R. (1996). Taro genetic resources—International Board for Plant Genetic Resources (IBPGR). <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 139–142). Noumea, New Caledonia: South Pacific Commission. Unpublished.

> Taro genetic resources with special reference to taro blight and taro viruses and the safe movement of germplasm are considered. IBPGR's interest in taro in Asia, the Pacific and Oceania is described.

335. Rasyid, A. (1988). Efikasi fungisida Ridomil 35 SD terhadap penyakit hawar daun (*Phytophthora colocasiae*) pada talas. [The efficacy of Ridomil 35 SD fungicide on controlling taro leaf blight (*Phytophthora colocasiae*) in taro.]. Unpublished report of the Faculty of Agriculture UNCEN, Manokwarai. 336. Raynor, B. (1991). Report on the rapid rural assessment of taro agriculture on Pohnpei Island, F.S.M. In A. M. Vargo (Compiler), <u>A Rapid Rural Appraisal</u> of Taro Production Systems in Micronesia, Hawaii and American Samoa. (pp. 117–144). Hawaii, USA: University of Hawaii.

> A rapid rural appraisal of taro production on Pohnpei carried out in 1990 is reported. *Phytophthora* leaf blight was identified as the most important disease and was cited by growers as the major problem. Removal of infected leaves was the control measure used.

 Raynor, B., & Silbanus, S. (1993). Ecology of *Colocasia* taro production on Pohnpei. In <u>Proceedings of the Sustainable Taro Culture for the Pacific Conference.</u> University of Hawaii, 24–25 September 1992. (20–24.). Honolulu, Hawaii: Hawaii Institute of Tropical Agriculture and Human Resources. HITAHR Research Extension Series No. 140.

In a survery of taro production on Pohnpei in which data were collected from December 1990 to July 1991, *Phytophthora* blight was identified as the most serious disease. Leaf blight was more serious on low-input farms than on high-input farms. Reasons for this are discussed and low-input strategies to improve disease control are recommended.

- Reddy, D. B. (1970). A preliminary list of pests and diseases of plants in Western Samoa. <u>Technical Document, FAO Plant Protection Commission in South East</u> <u>Asia 15</u>.
- Reinking, O. (1919). Diseases of economic plants in China. <u>Philippine Agriculturist</u> 8, 109–134.
- 340. Reinking, O. A. (1918). Philippine economic plant diseases. <u>Philippine Journal of Science A 13</u>, 165–274.
- 341. Reinking, O. A. (1919). Philippine plant diseases. <u>Phytopathology</u>9, 114–149.
- 342. Ribeiro, O. K., Erwin, D. C., & Zentmyer, G. A. (1975). An improved synthetic medium for oospore production and germination of several *Phytophthora* species. <u>Mycologia</u> 67(5), 1012–1019.
- 343. Robinson, R. A. (1996). Aroids. In <u>Return to Resistance</u> (pp. 237–238). Davis, California, USA: AgAccess.
- 344. Rogers, S., Iosefa, T., Hoponoa, T., Hazelman, S., & Hunter, D. (2000 July). Farmer inovation in the South Pacific. In <u>ILEIA Newsletter</u>, 2000 July, pp. 7–8.

This article describes how Samoan farmers have innovated to ensure rapid multiplication of leaf blight-resistant taro cultivars.

345. Rogers, S., & Schwanz, V. (1998). Coupling participatory research to technology transfer. In <u>Diffusion and transfer of agricultural technology in the Pacific.</u> <u>Reports and papers from the third annual meeting of cooperators.</u> Vava'u, Kingdom of Tonga, 24–28 November 1997. (pp. 101–108). Suva, Fiji: Pacific Regional Agricultural Programme.

Included in this paper are the general recommendations for taro leaf blight control in Samoa.

- 346. Rwimassa, P. M. R. (1988). Permaduan beberapa dosis Dithane M-45 dan jenis klon talas dalam pengendalian penyakit hawar daun (*Phytophthora colocasiae*). [The impact of Dithane M-45 application rate and taro clones in controlling taro leaf blight (*Phytophthora colocasiae*).]. Unpublished report of the Faculty of Agriculture UNCEN, Manokwarai.
- 347. Saena, T. B. (1997). <u>In-vitro</u> multiplication of taro (Colocasia esculenta var. esculenta L. Schott.). Unpublished masters dissertation, University of the South Pacific.

This thesis contains general background information on taro leaf blight in Samoa and it's economic impact.

- 348. Sahu, M. P., & Singh, K. P. (1987). Fungicidal control of leaf blight disease of taro (Colocasia esculenta (L.) Schott). In <u>Tropical tuber crops: production and utilization</u>. Proceedings, National Symposium on Production and Utilization of <u>Tropical Tuber Crops</u>. Trivandrum, India, 27–29 November 1985. (pp. 183–185). Trivandrum, India: Indian Society for Root Crops.
- 349. Sahu, M. P., Singh, K. P., & Singh, J. R. P. (1989). Control of blight disease of taro. Indian Farming 39(2), 22–23.

Four sprays of zineb at 15 d intervals starting from the end of Jul. to early Aug. reduced the incidence of *Phytophthora colocasiae* on *Colocasia esculenta* and increased the yield. Other measures including minimising the source of inoculum, maintenance of sanitary field conditions, crop rotation and the use of disease-free plant material, are also recommended.

350. Santos, G. H. (1993). Colocasia taro varieties on Pohnpei. In Proceedings of the Sustainable Taro Culture for the Pacific Conference. University of Hawaii, 24-25 September 1992. (8-14.). Honolulu, Hawaii: Hawaii Institute of Tropical Agriculture and Human Resources. HITAHR Research Extension Series No. 14.

The characteristics of the eight commonly grown taro varieties in Pohnpei are described, including their susceptibility/resistance to blight.

351. Sar, S. A., Wayi, B. M., & Ghodake, R. D. (1998). Review of research in Papua New Guinea for sustainable production of taro (*Colocasia esculenta*). <u>Tropical</u> <u>Agriculture (Trinidad)</u> 75(1), 134–138.

Studies on taro leaf blight, including breeding, are reported.

- 352. Sarejanni, J. A. (1936). La pourriture du Collet des Solan'ees cultivees et la classification du genre *Phytophthora*. [Collar rot of cultivated Solanaceae and classification of the genus *Phytophthora*]. <u>Annales De L'Institute</u> <u>Phytopathologique Benaki</u>2, 35–52.
- 353. Sato, D. M. (1991). The rapid rural appraisal of taro agriculture on the Island of Hawaii. In A. M. Vargo (Compiler), <u>A Rapid Rural Appraisal of Taro</u> <u>Production Systems in Micronesia, Hawaii and American Samoa.</u> (pp. 59– 77). Hawaii, USA: University of Hawaii.

A rapid rural appraisal of taro production on Hawaii conducted in 1989 is reported. *Phytophthora* leaf blight was identified in both lo'i and low input systems. In the former it affected leaf production but not corm production, and in the latter was not perceived as a constraint. No fungicides were used in either system to control the disease.

- 354. Savage, E. J., Clayton, C. W., Hunter, J. H., Brenneman, J. A., Laviola, C., & Gallegly, M. E. (1968). Homothallism, heterothallism, and interspecific hybridization in the genus *Phytophthora*. <u>Phytopathology</u> 58, 1004–1021.
- 355. Sawada, K. (1931). <u>Descriptive Catalogue of the Formosan Fungi, Part V</u>. Formosa: Department of Agriculture, Research Institute.
- 356. Sawada, K. (1911). Infection of taro. In (Special Report of the Formosan Agricultural Experiment Station), (p. 11).
- 357. Sawada, K. (1911). *Phytophthora* disease of taro. In (Special Report of the Formosan Agricultural Experiment Station), (pp. 75–84).
- 358. Sawant, I. S., Sawant, S. D., & Nanaya, K. A. (1995). Biological control of *Phytophthora* root-rot of coorg mandarin (*Citrus reticulata*) by *Trichoderma* species grown on coffee waste. <u>Indian Journal of Agricultural Sciences</u> 65(11), 842-846.

During 1989–92 the biological control of root-rot of mandarins caused by *P. nicotianae* var. *parasitica* and *P. colocasiae* was studied. *T. harzianum, T. viride* and *Gliocladium virens* were widely distributed in *Citrus* orchards in Kodagu, Karnataka, India, with populations of 200–2000 colony forming units/g soil. Seventeen isolates were highly antagonistic to both *Phytophthora* spp. *in vitro*. For large-scale fungal multiplication, local waste (coffee-cherry husk, fruit skin and berry mucilage, poultry manure and mushroom-grown waste) was a suitable substrate with 20–30 million colony forming units/g. Pot trials amended with coffee-cherry husk and poultry manure in a 1:2 ratio decreased feeder root-rot and increased seedling growth. Akomin 0.3%, metalaxyl + 0.25% mancozeb (as Ridomil MZ) spray and drenching 0.2% chlorothalonil were the best chemical treatments for disease control and increased seedling growth. Isolates E, T3, 3HR and D of *T. harzianum* and isolate B of *T. viride* grown on coffee-cherry husk decreased the feeder root-rot and increased plant growth when applied as 1% inoculum in soil.

Semisi, S. T. (1996). Taro leaf blight disease, *Phytophthora colocasiae*, in Western Samoa. <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 63–68). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The importance of taro to the Samoan economy and as a staple food is highlighted. The occurrence, distribution, spread and control of taro leaf blight (which includes quarantine, training and public awareness campaign and a spraying campaign) are outlined. Research activities and collaboration with international/regional organisations are listed.

360. Semisi, S. T., Mauga, T., & Chan, E. (1998). Control of leaf blight disease, *Phytophthora colocasiae* Racib. in taro, *Colocasia esculenta* (L.) Schott, with phosphorous acid. Journal of South Pacific Agriculture 5(1), 77-83.

Phosphorous acid applied at 14 ml/litre gave excellent control of taro (*Colocasia esculenta*) leaf blight disease caused by *P. colocasiae*. The duration of control varied, mainly due to prevailing climatic conditions. Under Western Samoa conditions, this appeared to be no more than 2-4 weeks. This compared poorly with control obtained for root and heart rot diseases in pineapple (one crop cycle) caused by *P. cinnamoni* with a single application of phosphorous acid. It is suggested that the high rainfall and rapid growth rates of taro may result in more rapid dilution of the fungicide. It is also suggested that it may be related to its indirect mode of action, i.e., that of stimulating host defence responses to the pathogen. Since there is an additive effect of phosphorous acid, and taro in the Pacific is believed to lack genetic resistance, the effect of the fungicide would not be as pronounced.

361. Semisi, S. T., Mauga, T., & Chan, E. (1995). Control of leaf blight disease, *Phytophthora colocasiae* Racib. in taro, *Colocasia esculenta* (L.) Schott, with phosphorous acid. In <u>10th Biennial Australasian Plant Pathology Society</u> <u>Conference.</u> Christchurch, New Zealand.

A poster presented at this meeting.

362. Sen, H., & Das, P. K. (1991). Agronomical appraisal of some taro accessions in the Gangetic alluvium of West Bengal. Journal of Root Crops 17(2), 154–155.

Nine taro selections were evaluated in West Bengal, India, during 1989–90, for production potential and susceptibility to leaf blight. Cormel yields were found to vary between season and cv. Kakakachu had the highest pooled mean yield (9.71 t/ha), which was closely followed by cv. Panchmukhi (9.03 t/ha) and cv. Kovvur local (8.72 t/ha). The incidence of leaf blight was widespread in both seasons, except on cultivars Panchmukhi and Nadia local in 1989. These cultivars were slightly affected in 1990, which might be due to the unusually heavy rainfall in that season.

363. Seth, L. N. (1939). <u>Report of the Mycologist, Mandalay, Burma, for the year ended</u> 31 March, 1939.

- 364. Shaw, D. E. (1984). Microorganisms in Papua New Guinea. <u>Department of Primary</u> <u>Industry, Port Moresby, Research Bulletin (No. 33), 344 pp.</u>
- 365. Shaw, D. E. (1963). Plant pathogens and other microorganisms in Papua New Guinea. <u>Department of Agriculture</u>, Stock and Fisheries, Port Morseby, <u>Research Bulletin (No. 1)</u>, 1–78.
- 366. Simin, A., Ivancic, A., Ososo, E., & Okpul, T. (1996). Variation of wild taro (*Colocasia esculenta* (L.) Schott) in Papua New Guinea. In <u>The Second Taro</u> <u>Symposium</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 32–40).

Wild taro in Papua New Guinea showed little variation in susceptibility to taro leaf blight and taro viruses and in qualitative and quantitative characteristics. It is concluded that in Papua New Guinea, wild taro populations consist of a single clone.

- 367. Singh, D. (2000 March). Building up taro gene pool for better yield. In <u>The National</u>, Papua New Guinea ,2000 March, Agriculture Supplement, p. 14 pp.
- 368. Singh, D., Okpul, E., Iramu, E., Wagih, M., & Sivan, P. (2000). Breeding taro for securing PNG's traditional staple. In <u>Proceedings Papua New Guinea Food</u> <u>and Nutrition Conference.</u> Lae, Papua New Guinea.
- 369. Singh, D., & Okpul, T. (2000). Evaluation of 12 taro (*Colocasia esculenta* (L.) Schott) leaf blight-resistant colones for yield and eating quality in Papua New Guinea. <u>SABRAO Journal of Genetics and Plant Breeding</u> 32(1), 39–45.
- 370. Singh, D., & Okpul, T. (1999). Genetic improvement of PNG's traditional staple. <u>Post Courier</u>, 33 pp. Dated 5 May 1999.
- Singh, D., Okpul, T., & Guaf, J. (1999). Assessing genetically improved taro lines at NARI. <u>Fresh Produce</u> 144, 6–7.
- 372. Singh, D., Okpul, T., Gunua, T., Iramu, E., Wagih, M., Hunter, D. G., Delp, C., Fonoti, P., Sivan, P., & Jackson, G. V. H. (2000). Breeding taro (*Colocasia esculenta*) for durable resistance to leaf blight (*Phytophthora colocasiae*) in the South Pacific. In <u>Proceedings Durable Disease Resistance Symposium</u>. Wageningen, The Netherlands, 28 November-1 December 2000. (p. 20). Abstract.
- 373. Singh, K. G. (1973). <u>A check-list of host and disease in peninsular Malaysia</u>, 189 pp. Kuala Lumpur, Malaysia: Ministry of Agriculture and Fisheries.

In this list *Phytophthora colocasiae* is recorded on *Colocasia esculenta* and *Piper betle* in Malaysia.

 Singh, P. N., Sindhu, I. R., & Singhal, G. (1984). Microfungi associated with noninfected and infected leaves of *Colocasia*. <u>Acta Botanica Indica</u> 12 (1), 82– 85. Healthy C. antiquorum leaves and those infected by Phytophthora colocasiae harboured distinct phylloplane microflora. Actinomucor repens, Aspergillus terreus, Curvularia tuberculata, Mucor racemosus and white sterile hyphae were restricted to non-infected leaves, Colletotrichum sp., Humicola brevis, Memnoniella echinata and Nigrospora sphaerica to blighted ones. Alternaria alternata, Aspergillus humicola, A. niger, Curvularia lunata [Cochliobolus lunatus], Curvularia pallescens, Fusarium sp. and Sclerotium sp. occurred occasionally on healthy leaves but were frequent on blighted ones.

375. Sinha, A. R. P., & Salam, M. A. (1988). Pathogen fungi of Andamans-I. <u>Advances in</u> <u>Plant Sciences 1(2), 214–218.</u>

Diseases caused by *Phytophthora* [*P. nicotianae* var.] *parasitica* on pineapples and *P. colocasiae* on *Bougainvillea speciabilis* and *Colocasia antiquorum*, in Andaman, India, are described.

376. Sitansu Pan, & Ghosh, S. K. (1997). Antagonistic potential of some soil fungi on *Phytophthora colocasiae* Racib. Journal of Mycopathological Research 35(2), 153-157.

Soils from West Bengal, India, were screened to isolate potential antagonists of *P. colocasiae*. Of 58 microbial isolates (40 fungi, 8 bacteria and 10 actinomycetes), only 10 fungal isolates showed antagonistic potential in tests on dual culture plates. Of the 10, 5 were identified as *Trichoderma viride*, 3 as *T. harzianum*, 1 as *Gliocladium virens* and 1 was an unidentified sterile fungus. Mycoparasitic/hyperparasitic activities were observed as coiling of hyphae, formation of haustoria-like structures, disorganisation of host cell contents and penetration of host hyphae.

377. Sitansu Pan, & Ghosh, S. K. (1994). Effect of temperature, moisture and soil amendment on the survival ability of hyphae of *Phytophthora colocasiae* in soil. Journal of Mycopathological Research 32(1), 59-65.

Hyphae generally survived longer in sterilized soil (30 d) than in natural soil (5 days). At >20°C and >55% soil moisture the hyphae disappeared within 5 days of burial in natural soil. Various soil amendments, including C and N compounds, had no apparent effect on survival in natural soil, though glucose, fructose and glucose + L-asparagine delayed lysis to some extent.

378. Sitansu Pan, & Ghosh, S. K. (1997). Functional relationship of environmental factors for prediction of *Phytophthora* leaf blight severities of taro (*C. esculenta*) under natural epiphytotics. Journal of Mycopathological Research 35(1), 41– 46.

In Bangladesh, the effect of environmental factors (Xi's, i=1-7) on *Phytophthora* leaf blight (*P. colocasiae*) severity (Y) in taro (*C. esculenta*) under natural epiphytotics were analysed for predictive purposes. Correlation analysis of the variables had established a prima facia case of functional relationship of *Phytophthora* leaf blight severity of taro over minimum air

temperature (X2), maximum relative humidity (X3), minimum relative humidity (X4), total rainfall (X5), number of rainy days (X6) and mean temperature-humidity index (x7). Finally, a multivariable linear prediction model Y=- 1534.1871 - 20.2920 X2 + 2.2079 X3 + 1.4724 X4 + 2.2095 X5 - 4.6821 X6 + 25.1241 X6 with R2=0.7859 was developed that showed maximum fitness with observed data.

- 379. Sivan, P. (2000). Taro germplasm collection, conservation and utilisation in the Pacific Islands. In <u>12th Symposium of the International Society for Tropical</u> <u>Root Crops.</u> Tsukuba, Japan, 10–16 September 2000.
- 380. Sivan, P., & Misipati, P. (1997). Taro breeding for resistance to taro blight. In L. G. G. Yapa, & M. Umar (Editors), <u>1996 Annual Research Report. The Institute for Research, Extension and Training in Agriculture (IRETA) and the School of Agriculture</u> (pp. 28–29). Apia, Samoa: University of the South Pacific, Alafua Campus.

Progress on this project on breeding taro resistant to blight in Samoa is reported.

381. Sivan, P., & Misipati, P. (1997). Taro breeding for resistance to taro leaf blight. IRETA's South Pacific Agricultural News 14(9), 1,6.

Taro breeding for blight resistance in Samoa with the cultivars PSG-G2, Toantal, Pastora, Pwetepwet, Interpayer, Buntafortwe and Niue is described.

382. South Pacific Commission. (1997). <u>Taro leaf blight seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November 1993. Noumea, New Caledonia: South Pacific Commission.

Details of the proceedings of the taro leaf blight (caused by *Phytophthora colocasiae*) seminar held at Alafua, Western Samoa are provided. Summaries of the reports of working groups on cultural control, awareness campaign materials, taro (*Colocasia esculenta*) germplasm collection, selection and breeding and fungicide biology are presented. The recommendations of the working groups are provided. A list of the papers presented at the meeting is given. These have not been formally published, but are noted in this bibliography individually, and copies may be obtained from either IRETA or SPC.

383. South Pacific Commission. (1996). <u>Taro Seminar II.</u> Lae, Papua New Guinea, 26–30 June 1995. (35 pp.). Noumea, New Caledonia: South Pacific Commission.

> A summary of the proceedings of this meeting is provided. Taro leaf blight was considered at several sessions including the country reports, other reports, taro pathology, breeding and the plant pathology working groups. Recommendations of the meeting are given.

- 384. Stamps, D. J., Waterhouse, G. M., Newhook, F. J., & Hall, G. S. (1990). Revised tabular key to the species of *Phytophthora*. (p. 28 pp.). UK: CAB International.
- 385. Stewart, R. B., & Yirgou, D. (1967). Index of plant diseases in Ethiopia. <u>Bulletin of the Experimental Station, College of Agriculture Haile Selassie University</u>, 30.
- 386. Sumich, F. N. (1996). Chemicals active on *Phytophthora colocasiae*. <u>Taro Leaf</u> <u>Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 149–152). Noumea, New Caledonia: South Pacific Commission. Unpublished.

Details are given of three products active against *Phytophthora colocasiae*, Ridomil MZ, Manzate 200 DF and copper oxychloride. Factors to consider when using chemical sprays to control taro leaf blight are discussed.

387. Tamori, M. (1974). Studies on the genus *Phytophthora* and pineapple heart rot disease found in Okinawa. <u>Science Bulletin of the College of Agriculture</u>, <u>University of the Ryukyus</u>, Okinawa. (No.21), 1–72.

Results are presented of a study of the host range of *Phytophthora* species in Okinawa, a comparison of their morphological characters, oospore formation and pathogenicity of isolates from different hosts. Among species newly recorded was *P. colocasiae* on *Colocasiae*.

388. Tan, T., & Wicaksono, B. W. D. (1996). A preliminary study of ten taro clones under Prafi conditions. In <u>The Second Taro Symposium</u>. Proceedings of an <u>International Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (pp. 74–78).

Phytophthora colocasiae infected all 10 of the taro clones tested at Prafi, Indonesia, and decreased yields.

389. Taylor, M. B., & Palupe, A. (1996). Taro tissue culture. <u>Taro Leaf Blight Seminar</u>. <u>Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 89–94). Noumea, New Caledonia: South Pacific Commission. Unpublished.

The use of tissue culture to assist in the problem of taro leaf blight is discussed. Its use in the importation of taro germplasm and rapid multiplication techniques are described in some detail.

- 390. Tedder, M. M. (1973). Staple diets in the BSIP. <u>South Pacific Bulletin (Third</u> quarter).
- 391. Teng, S. C. (1932). Some fungi from Canton. <u>Contribution of the Biological</u> <u>Laboratory, Scientific Society of China, Botanical Series</u> 8(2), 121–128.

An annotated list of 41 fungi collected in Canton, China, and including *Phytophthora colocasiae* on Colocasia esculenta, is presented.

- 392. Tethool, Y. (1983). Pengaruh intensitas serangan penyakit becak daun (*Phytophthora colocasiae*) terhadap produksi talas di daerah biak.[The effect of taro leaf blight intensity (*Phytophthora colocasiae*)on taro production in Biak.]. Unpublished report of the Faculty of Agriculture UNCEN, Manokwarai.
- 393. Thaman, R. R. (1984). Intensification of edible aroid cultivation in the Pacific Islands. In S. Chandra (Editor), <u>Edible Aroids</u> (pp. 103-122). Oxford, UK: Clarendon Press.

In this account of taro cultivation in the Pacific, it is noted that it is almost impossible to grow *Colocasia* taro in the lowland areas of Bougainville due to taro leaf blight.

394. Thankappan, M. (1986). Investigation on the disease of aroids. <u>Annual report 1985</u>, <u>Central Tuber Crops Research Institute</u>, <u>Trivandrum</u>, <u>India</u>. (pp. 93–95). Trivandrum, India: Indian Council of Agricultural Research.

Outbreaks of *Phytophthora colocasiae* were very mild on 29 clones of *Colocasia* in 2 field trials, owing to unfavourable climatic conditions.

395. Thankappan, M. (1985). Leaf blight of taro—a review. Journal of Root Crops 11(1–2), 1–8.

Leaf blight (caused by *Phytophthora colocasiae*) of taro, *Colocasia esculenta*, is discussed under the following headings: distribution, extent of damage, symptoms, predisposing factors, the pathogen, perennation, collateral hosts, other *Phytophthora* sp. on *C. esculenta* and control.

- 396. Thankappan, M., & Malathi, V. G. (1984). Diseases of aroids. Indian Farming 33, 47.
- 397. Thomas, K. M., & Ramakrishnan, T. S. (1948). Studies on the genus *Phytophthora* II. <u>Proceedings of the Indian Academy of Science, Section B</u> **27**(3), 55–73.
- 398. Thompson, A. (1939). Notes on plant diseases in 1937–38. <u>Malaysian Agricultural</u> Journal 27, 86–98.
- 399. Thompson, A. (1940). Notes on plant diseases in 1939. <u>Malaysian Agricultural</u> Journal 28, 400-407.
- 400. Thongjiem, M., & Poolperm, N. (1999). Advances in taro (*Colocasia esculenta*) research in Thailand. In <u>Annual Report for 1998.</u> (pp. 97–102). Taro Network for South-East Asia and Oceania (TANSAO).

Phytophthora colocasiae is reported as a major disease.

401. Tilialo, R., Greenough, D., & Trujillo, E. E. (1996). The relationship between balanced nutrition and disease susceptibility in Polynesian taro. In <u>Mineral</u> <u>nutrient disorders of root crops in the Pacific. Proceedings of a workshop.</u> Nuku'alofa, Kingdom of Tonga, 17–20 April 1995. (pp. 105–109). ACIAR Proceedings No. 65. The effects of N, P, K and Ca nutrition on the susceptibility of *Colocasia* esculenta to *Phytophthora colocasiae* are reported from field experiments in American Samoa. The importance of balanced plant nutrition in a sustainable, integrated management strategy to reduce the incidence of the disease is discussed.

- 402. Tomlinson, D. L. (1987). A bacterial leaf disease of taro (Colocasia esculenta) caused by Xanthomonas campestris in Papua New Guinea. <u>Tropical Pest</u> <u>Management</u> 33(4), 353-355.
- 403. Trujillo, E. E. (1967). Diseases of the genus Colocasia in the Pacific area and their control. In <u>Proceedings of the International Symposium on Tropical Root</u> <u>Crops. Volume 2.</u> University of the West Indies, St Augustine, Trinidad, 2–8 April 1967. (IV 13-IV 19.). St Augustine, Trinidad: University of the West Indies.

The history and characteristics of taro leaf blight are described. Chemical control is possible but costly, and the author advocates the development of resistant varieties to manage this disease in the Pacific. Taro rots and other minor diseases are also described.

404. Trujillo, E. E. (1965). The effects of humidity and temperature on *Phytophthora* blight of taro. <u>Phytopathology</u> 55(2), 183–188.

Sporulation of P. colocasiae on detached taro leaves was affected by temperature and relative humidity, with optima at 21 C and 100%. No sporulation occurred at RH lower than 90%. On washed lesions, 2-3 hours were required for sporulation to be initiated. Zoosporangia at RH lower than 90% lost viability rapidly and the percentage of indirect germination dropped significantly. This was attributed to rapid dehydration of the protoplasm. Indirect germination of zoosporangia occurred in water in less than 2 hours at the optimum temperature of 20-21 C, and zoospores germinated in less than a half hour after release. Direct germination occurred in 5-6 hour at 20-28 C. The percentage of direct germination was less than 5 at all temperatures. Epidemics of the disease occurred in the field when night temperatures and relative humidity were optimum for 6-8 hours for 3-4 consecutive days and light rains or dews prevailed in the morning. During these periods, 50% of the zoosporangia collected in the morning germinated indirectly. Zoosporangia collected at 2 pm were not viable; the phytoplasm appeared to be totally dehydrated.

- 405. Trujillo, E. E. (1965). The effects of humidity and temperature on *Phytophthora* blight of taro. <u>Phytopathology</u> 55, 183–188.
- 406. Trujillo, E. E. (1965). Effects of humidity and temperature on zoosporangia production and germination of *Phytophthora colocasiae*. <u>Phytopathology</u> 55 (2), 126. Abstract of paper presented at the 1964 Annual Meeting of the Caribbean Division of the American Phytopathological Society, Mexico City, 26–30 July 1964.

The effect of temperature and relative humidity on sporulation of P. *colocasiae* was demonstrated, with optima of 21 C and 100%, respectively. With RH less than 90%, no sporulation occurred. At RH less than 90%, zoospores rapidly lost their viability.

- 407. Trujillo, E. E. (1971). <u>A list of diseases of economic plants in the Trust Territory of</u> <u>the Pacific Islands</u>, 23 pp. Saipan, Trust Territory of the Pacific Islands: Department of Resources and Development, Division of Agriculture.
- 408. Trujillo, E. E. (1993). <u>Status of Phytophthora</u> leaf blight of taro in Western Samoa and recommendations for its control. Washington DC, USA.: USDA/OICD/DRD/AAE.
- 409. Trujillo, E. E. (1996). Taro leaf blight in Micronesia and Hawaii. <u>Taro Leaf Blight</u> <u>Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 41–43). Noumea, New Caledonia: South Pacific Commission. Unpublished.

In this transcript of a presentation to the meeting, the spread of taro leaf blight into the region, with special reference to the situation in Hawaii and Micronesia, is described. Environmental factors affecting the disease and chemical control measures taken in Hawaii are outlined. Difolatan is considered to be the best fungicide. Ridomil was also effective, but copper fungicides give little control. Adequate fertilization of the crop is also considered necessary in the control strategy. In Micronesia taro varieties are disappearing. The crop is of less importance here, but taro leaf blight still limits taro production.

410. Trujillo, E. E. (1996). Taro leaf blight research in the American Pacific. <u>ADAP</u> <u>Bulletin 1</u>, 1-3.

The spread of taro leaf blight in the Pacific and the effect of the disease's introduction on taro production in American Samoa and Samoa in 1993/94 is discussed. The ADAP Taro Leaf Blight Project, started in 1994 is described. Micronesian taro varieties were collected and evaluated for resistance and some were multiplied by tissue culture. Field testing of promising Palauan varieties is described. Other objectives of the project were to determine the viability of zoosporangia in soil at different moisture and temperature regimes and to determine the effect of balanced nitrogen, phosphorus, potassium and calcium nutrition on taro leaf blight incidence. Spore survival in the soil of >3 months in moist soils and <20 C is reported. Balanced fertilizer applications led to an increase in yield of taro but the effect on taro leaf blight was not significant.

- 411. Trujillo, E. E. (1971). <u>Taro leaf spot.</u> (Plant Disease, Agricultural Extension Leaflet No. 31. 1 p. Saipan, Mariana Islands: Department of Resources and Development, Division of Agriculture.
- 412. Trujillo, E. E., & Aragaki, M. (1964). Taro blight and its control. <u>Hawaii Farm</u> <u>Science</u> 13, 11–13.

The disease is described and control experiments in Hawaii described. Results showed that basic copper sulphate at 2 and 4 lb/100 gal gave good control of blight, while maneb at 2 lb/gal was no better than the controls. Recommendations for spraying are given.

413. Trujillo, E. E., & Menezes, T. (1995). Field resistance of Micronesian taros to *Phytophthora* blight. <u>Phytopathology</u> 85(12), 1564. Abstract of a paper presented at the APS Caribbean Division Meeting, 1-5 October 1995, Guadeloupe.

> Taro cultivars from Guam, Palau and Rota were evaluated for resistance to taro leaf blight in the field at Hakalaua, Hawaii. High levels of resistance were found among the Palaun cultivars. All the cultivars tested were significantly more resistant to taro leaf blight than Niue, the principal cultivar grown in American Samoa. Disease resistance in the majority of the Palaun cultivars appeared to be related to the highly water-repellent nature of the foliage and to a hypersensitive reaction that caused infected leaves to drop off. It is concluded that the Palaun cultivars are promising for cultivation in American Samoa.

- 414. Trujillo, E. E., Wall, G., Greenough, D., & Tilialo, R. Effects of nitrogen, calcium, and/or potassium nutrition on the resistance and/or susceptibility of Polynesian taros, *Colocasia esculenta*, to the taro leaf blight, caused by the fungus *Phytophthora colocasiae*. ADAP Taro Leaf Blight Project Report.
- 415. Tsatsia, H. (1995). Taro breeding programme for disease resistance. In <u>Annual Report 1994, Solomon Islands Government, Agriculture Division, Ministry of Agriculture & Lands, Research Department</u> (pp. 30–32). Honiara, Solomon Islands: Dodo Creek Research Station.

Results of some field varietal trials are briefly reported, together with taste tests of some promising varieties.

416. Tucker, C. M. (1933). Description of the genus *Phytophthora*. <u>University of Montana</u> <u>Agricultural Experiment Station Research Bulletin, 184</u>, 80 pp.

The work of Mendiola in the Philippines and Petch in Ceylon (Sri Lanka) are described.

- 417. Tucker, C. M. (1931). Taxonomy of the genus *Phytophthora* de Bary. <u>University of</u> <u>Montana Agricultural Experiment Station Research Bulletin</u> **153**.
- 418. Umbala, K. G., & Ramarao, P. (1972). Leaf blight of *Colocasia* caused by *Phytophthora palmivora*. Indian Journal of Mycology and Plant Pathology **2**(2), 187–188.

The fungus was recorded on *C. esculenta*. Symptoms and the pathogen are described.

419. Unnikrishnan, M., Nayar, G. G., Pillai, P. K. T., Vasudevan, J. S., Jos, J. S., Venkateswarlu, M., Thankappan, M., & Lakshmi, K. R. (1987). Sree Rashmi and Sree Pallavi: two promising varieties of *Colocasia*. Journal of Root Crops 13(2), 111–116.

Of the two promising varieties, Sree Pallavi (C-266) showed high field tolerance to leaf blight.

420. Vargo, A. M. (1991). The rapid rural appraisal of taro agriculture in American Samoa. In A. Vargo (Compiler), <u>A Rapid Rural Appraisal of Taro Production</u> <u>Systems in Micronesia, Hawaii and American Samoa.</u> (pp. 7–30). Hawaii, USA: University of Hawaii.

A rapid rural appraisal carried out in American Samoa in 1989 is reported. *Phytophthora colocasiae* was identified as an important disease during this appraisal.

421. Vargo, A. M. (1991). The rapid rural appraisal of taro production in Chu'uk. In A. M. Vargo <u>A Rapid Rural Appraisal of Taro Production Systems in Micronesia,</u> <u>Hawaii and American Samoa.</u> (pp. 33–34). Hawaii, USA: University of Hawaii.

In a survey carried out in 1990, *Phytophthora colocasiae* was identified as a major problem in taro cultivation on Moen and Uman.

- 422. Vasquez, E. A. (1989). Screening taro varieties for resistance to insect pests and diseases. <u>R and D Philippines (No. 6-7)</u>, 28-29.
- 423. Vasquez, E. A. (1990). Yield loss in taro due to *Phytophthora* leaf blight. Journal of Root Crops 16(1), 48-50.

Four taro (*Colocasia esculenta*) accessions (PRG-686, PRG-688, PRG-538 and PRG-179) with varying resistance to *P. colocasiae* were inoculated with the pathogen 2 or 4 months after planting (MAP). In general, plants inoculated at 4 MAP had a higher disease rating and lower yield than those inoculated earlier, except accession PRG-688 (resistant). Yield reductions were low in resistant accessions (2.9-4.7%) but higher in moderately resistant and susceptible accessions (24.4-36.5%). No significant differences were observed between yield reductions of susceptible and moderately resistant accessions.

424. Villanueva, M. R., & Tupas, G. L. (1980). Taro production in the Philippines—its prospects and problems. In <u>International Symposium on Taro and Cocoyam</u>. Visayas State College of Agriculture, Baybay, Leyte, Philippines, 24–25 September 1979. (pp. 99–111). Stockholm, Sweden: International Foundation for Science.

In this paper, taro leaf blight is identified as the most important disease of taro in the Philippines, causing more damage than insects. 425. Wagih, M. E. (1996). Disease-free baby corms of taro regenerated from axillary bud cultures coupled with thermotherapy. In <u>The Second Taro Symposium</u>. <u>Proceedings of an International Meeting</u>. Faculty of Agriculture, Cenderawasih University, Manokwari, Indonesia, 23–24 November 1994. (p. 124).

In this poster at the conference it is reported that axillary buds from taro severely infected by blight and viruses were excised, surface sterilised, treated at 55 C for 3 minutes and cultured. Shoots remained without symptoms for 6 months and were assumed to be disease-free. By 4–5 months small cormels had formed, providing an ideal way to transfer taro germplasm.

426. Wagih, M. E., Taufa, L., & Okpul, T. (1993). The use of seed-rescue culture technique in the production of pathogen-free taro for germplasm preservation and breeding for leaf blight resistance. In <u>Book of Abstracts. The First Taro Symposium.</u> Lae, Papua New Guinea, 25 October 1993. (p. 9). Lae, Papua New Guinea: University of Technology.

In this abstract, the use of seed rescue culture to produce pathogen-free taro plants in Papua New Guinea is reported. Three resistant varieties were identified.

- 427. Wahi, C. P. (1969). Vitamin requirements of *Phytophthora colocasiae* Racib. and *Helminthosporium euphorbiae*. <u>Hans. Journal of Applied Science, India</u> 1(2), 71–76.
- 428. Wall, G. C. (1996). Life after blight. The current taro leaf blight status on Guam. <u>Taro Leaf Blight Seminar. Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 39–40). Noumea, New Caledonia: South Pacific Commission. Unpublished.

Taro leaf blight is endemic in Guam but is of little economic importance. The reasons for this are briefly discussed. The use of disease resistant varieties and cultural practices are highlighted as important control measures.

429. Wall, G. C., & Wiecko, A. T. (1998). Screening of 29 taro cultivars (*Colocasia* esculenta) propagated in vitro, for resistance to taro leaf blight (*Phytophthora* colocasiae). Journal of South Pacific Agriculture 5(2), 9–12.

Twenty-nine taro varieties from Guam, American Samoa, Yap, Pohnpei and Thailand have been propagated *in vitro* and screened at the University of Guam for susceptibility to taro leaf blight. The most resistant varieties were: Gilin, Kugfel, Oglang, Pwetepwet, Thailand, Sushi, Ol and Pasdora.

Wall, G. C., Wiecko, A. T., & Trujillo, E. E. (1998). Evaluation of resistance to taro leaf blight in 29 *Colocasia esculenta* cultivars. <u>Phytopathology</u> 88(9 (Supplement)), S123.

Twenty nine taro cultivars were collected from Pohnpei, Yap and Guam. After *in vitro* propagation, plants were transferred to a screenhouse until they reached a mature size. Three plants per test for each cultivar, and each was tested 3 or 4 times. Plants (1 leaf) were spray-inoculated with 100-200 zoospores per ml. They were then covered with black plastic overnight. The evaluation was based on percentage leaf area damaged by the pathogen in 6–8 days. Tests included resistant and susceptible controls. Six cultivars out of 29 showed a good degree of resistance.

431. Walton, P. (1996). Taro leaf blight bibliography. <u>Taro Leaf Blight Seminar</u>. <u>Proceedings.</u> Alafua, Western Samoa, 22–26 November, 1993. (pp. 161–168). Noumea, New Caledonia: South Pacific Commission. Unpublished.

In this preliminary bibliography, references to almost 100 publications on taro leaf blight are included. Most of the references have abstracts.

432. Ward, R. G., & Ashcroft, P. (1998). Samoa: mapping the diversity.

Background information on the taro leaf blight problem in Samoa is given.

433. Waterhouse, G. M. (1970). <u>The genus *Phytophthora*</u> De Bary, 104 pp. UK: Commonwealth Agricultural Bureaux. Mycological Paper No. 122.

This volume contains the text of the original description of *Phytophthora* colocasiae in both German and English.

- 434. Waterhouse, G. M. (1963). Key to the species of *Phytophthora* de Bary. (p. 22 pp.). UK: Commonwealth Agricultural Bureaux. Mycological Papers. No. 92.
- 435. Waterhouse, G. M. (1931). The production of conidia in the genus *Phytophthora*. <u>Transactions of the British Mycological Society</u> **15**, 311–321.
- 436. Waterhouse, G. M., Newhook, F. J., & Stamps, D. J. (1983). Present criteria for classification of *Phytophthora*. In D. C. Erwin, S. Bartnicki-Garcia, & P. H. Tsao (Editors), *Phytophthora*: its Biology, Taxonomy, Ecology and Pathology (pp. 139–147). St Paul, Minnesota, USA: APS Press (American Phytopathological Society).

The classification of *Phytophthora* species is discussed.

- 437. Wei, C. T., & Hwang, H. S. (1942). A checklist of fungi deposited in the mycological herbarium of the University of Nanking, I (1924–1937). <u>Nanking Journal</u> 9(1–2), 329–372.
- 438. Weston, W. H. Jr. (1918). Report on plant diseases in Guam. <u>Guam Agricultural</u> <u>Experiment Station Report 1917</u>, 45–62.
- 439. Wiecko, A. T., Wall, G. C., & Trujillo, E. E. Taro leaf blight evaluations of 30 different taro cultivars (*Colocasia esculenta*) produced in tissue culture.
[Abstract]. In <u>Proceedings of the College of Arts and Science Conference</u>. University of Guam, Guam.

- 440. Worapan, K., & Thammasak, S. (1993). Rok bai mai ru rok ta-sua khong phuak. (Taro [*Colocasia antiquorum* Schott] blight disease [*Phytophthora colocasiae* in Thailand). Journal of Thai Phytopathological Society 3(1), 1–9.
- 441. Xu, X. L., Ko, W. H., Xu, X. L., & Ko, W. H. (1998). A quantitative confined inocultation method for studies of pathogenicity of fungi on plants. <u>Botanical</u> <u>Bulletin of Academia Sinica</u> 39(3), 187–190.

A technique for inoculation with precise numbers of fungal spores on leaves and stems of plants was developed. The technique consisted of placing 1- μ l drops with a fixed number of spores on the surface of leaves and stems, and covering each inoculum drop with a 10- μ l drop of low-temperature gelling SeaPlaque agarose to fix the inoculum on the target site. With this technique single zoospores of *Phytophthora capsici* were able to cause local lesions on leaves and stems of peppers (*Capsicum annuum* cv. California Wonder), and the size of the lesions directly correlated with the number of spores in the inoculum drops. Similar results were obtained when the technique was used to inoculate taro (*Colocasia esculenta*) leaves with zoospores of *Phytophthora colocasiae* and black mustard (*Brassica nigra*) leaves with *Alternaria brassicae*. This method has the advantages of being accurate and precise, and it is also easy to handle the inoculated plants. It may also be applicable to other pathogens.

442. Yap, T. C. (1999). Taro cultivation and research in Malaysia. In <u>Annual Report for</u> <u>1998.</u> (pp. 27–32). Taro Network for South-East Asia and Oceania (TANSAO).

In a disease survey, no Phytophthora colocasiae was found in Malaysia.

- 443. Yokoyama, K. M., Hollyer, J. R., Nakamoto, S. T., & Wanitprapha, K. (1989). <u>Taro</u>. Hawaii, USA: Department of Agriculture and Resource Economics, College of Tropical Agriculture and Human Resources, University of Hawaii. Economic Fact Sheet No. 1.
- 444. Yu, J. Y., & Chang, H. S. (1980). Chemical regulation of sexual reproduction in *Phytophthora colocasiae*. <u>Botanical Buletin of Academia Sinica</u> 21(2), 155–158.

Both A1 and A2 isolates produced substance(s) which initiated the formation of oospores in isolates of *P*. [*nicotianae* var.] *parasitica*, *P*. *palmivora* and *P*. *cinnamomi*, but were relatively insensitive in response to hormone(s) produced by opposite mating types.

445. Yu, J. Y., Chang, H. S., & Ko, W. H. (1981). Factors affecting the induction of sexual reproduction in *Phytophthora parasitica* by *P. colocasiae*. Journal of <u>General Microbiology</u> **123**(2), 249–252.

When *P. colocasiae* (A2) was used as a hormone producer and *P. [nicotianae* var.] *parasitica* (A1) as a hormone receptor, no sex organs of the latter were observed in matings lasting for 7 h, but the amount of hormone produced was sufficient to stimulate the production of 341 oospores/cm2 6 days later. Max. induction of sex organs was reached in matings lasting 48 h. Hormone production was inhibited by light, but the effect of light on oospore development was small. Temperatures of 10 and 15 deg C inhibited growth of, and hormone production by, *P. colocasiae*, and prevented *P. nicotianae* var. *parasitica* from forming new sex organs after stimulation by hormone. The effect of temperature on hormone and oospore development was good.

- 446. Yusuf, R. (1987). The influence of *Phytophthora colocasiae* on distribution of *Colocasiae esculenta* varieties in Jawa Island, Indonesia. <u>Berita Biologia.</u> (Indonesia) (Supplement 3), 17–19.
- 447. Zentmyer, G. A. (1988). Origin and distribution of four species of *Phytophthora*. <u>Transactions of the British Mycological Society</u> **91**(3), 367–378.

Information is presented on possible origins, and on the distribution of *P. infestans, P. cinnamomi, P. palmivora* and *P. colocasiae*. Little information is available on the origin of *P. colocasiae*, but there are indications of an Asiatic origin. The fungus has been distributed by means of vegetatively propagated material, and also probably by soil.

448. Zentmyer, G. A. (1990). Origin, distribution and significance of species of *Phytophthora* in the Tropics. In <u>Proceedings 3rd International Conference on Plant Protection in the Tropics: volume IV.</u> Genting Highlands, Pahang, Malaysia, 20–23 March 1990. (pp. 210–214). Kuala Lumpur, Malaysia: Malaysian Plant Protection Society.

The controversy of the centres of origins of tropical species of *Phytophthora* are discussed. Information is presented on the possible origin of *P. palmivora*, *P. cinnamomi*, *P. infestans*, and *P. colocasiae*.

449. Zentmyer, G. A. (1983). The world of *Phytophthora*. In D. C. Erwin, S. Bartnicki-Garcia, & P. H. Tsao (Editors), *Phytophthora*: its Biology, Taxonomy, Ecology, and Pathology (pp. 1–7). St Paul, Minnesota, USA: APS Press (American Phytopathological Society).

Although most of this introductory chapter relates to work on *Phytophthora* cinnamomi and *P. palmivora*, it does contain a note stating the first description of *P. colocasiae* Raciborski was in1900.

450. Zettler, F. W., Jackson, G. V. H., & Frison, E. A. (1989). Taro leaf blight. In <u>FAO/IBPGR Technical Guidelines for the Safe Movement of Edible Aroid</u> <u>Germplasm.</u> (pp. 16–17). Rome, Italy: FAO/IBPGR. The symptoms, distribution, biology, alternative hosts and quarantine measures for this disease are outlined.

451. Zhang, K. M., Zheng, F. C., Li, Y. D., Ann, P. J., & Ko, W. H. (1994). Isolates of *Phytophthora colocasiae* from Hainan Island in China: evidence suggesting an Asian origin of this species. <u>Mycologia</u> 86(1), 108–112.

Of 280 isolates of *P. colocasiae* obtained from Hainan Island, China, 136 were mating type A1, 102 were type A2 and 42 were A0. The 3 mating types were all pathogenic to taro (*Colocasia esculenta*) leaves and had similar electrophoretic patterns of soluble proteins. The representative isolates tested showed considerable variation in growth response to temperature, in ability to produce sporangia and in morphology of sporangia. It is suggested that Hainan Island in inside the centre of origin of *P. colocasiae*.

452. Zheng, F. C., & Ward, E. (1998). Variation within and between *Phytophthora* species from rubber and citrus trees in China, determined by polymerase chain reaction using RAPDs. Journal of Phytopathology 146(2-3), 103–109.

Variation among 39 isolates of *Phytophthora* of 6 morphological species (*P. citrophthora*, *P. [nicotianae* var.] *parasitica*, *P. capsici*, *P. palmivora* and *P. meadii*, from rubber and citrus trees, and *P. colocasiae* from taro) was studied using random amplified polymorphic DNA (RAPD) analysis. Ten randomly-chosen 10-mer primers were used. Generally, the banding patterns were similar within species and different between species, but no one primer was able to distinguish all 6 species from one another. Cluster analysis on pooled data from all the primers gave 6 groups of isolates corresponding to the 6 morphological species. The group corresponding to *P. citrophthora* was divided further into subgroups that were related to host species and geographical location. This work confirmed the existing morphological classification of *Phytophthora* isolates from rubber and citrus trees in tropical China and showed the validity of using RAPDs to study the taxonomy of *Phytophthora*.

Author Index

Adams, E. 1, 2	Bergquist, R. R. 56, 57, 58		
Akus, W. 3	Bernardo, E. N. 59		
Alam, S. 4	Bhatt, D. D. 60		
Ali, M. S. 100, 101	Bhuiyan, M. K. R. 100		
Amosa, F. 5, 164	Bilgrami, K. S. 50		
Anders, M. M. 6	Bisby, G. R. 66, 67		
Ann, P. J. 7, 451	Bishop, R. 265		
Anon 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28	Booth, R. H. 88		
29, 30, 31, 32, 33, 34, 35, 36	Bourke, R. M. 61, 62, 63, 255, 319, 331		
Aragaki, M. 412	Breen, J. 183		
Arentz, F. 37	Brenneman, J. A. 354		
Arura, M. 38	Brooks, F. 64, 65		
Ashcroft, P. 432	Brown, J. F. 130		
Asher, C. J. 313, 401	Butler, E. J. 66, 67, 68		
Ashok Aggarwal 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50	CAB INTERNATIONAL 69, 70, 71		
Ashok Bhattacharyya 51	Cable, W.J. 72		
Atkinson, W. 230	Carpenter, C. W. 75		
Balagopal, C. 348	Chan E 75 76 77 260 261		
Baliad, M. E. 325	Chandres S 78 184 255 303		
Banerjee, K. 127	Chang H S $147, 444, 445$		
Banks, K. 167	Charles W B 271 403		
Barrau, J. 52, 53, 54, 55	Chase R G 192		
Bartnicki-Garcia, S. 105, 138, 153, 436, 449	Chaudhary, R. G. 79		

Chhibber, K. N. 99	Dey, T. K. 100, 101	
Cho, J. J. 80, 167	Dingley, J. M. 102	
Chowdhury, N. 101	Dubey, S. C. 330	
Chowdhury, S. 81	Erari, D. K. 103, 104, 283	
Chowdhury, S. R. 252	Erwin, D. C. 105, 106, 138, 153, 342,	
Cifferi, R. 82	430, 449	
Clarke, W. C. 83	Espire \mathbf{P} \mathbf{P} 242	
Clarkson, D. 84, 85	Espino, K. B. 242	
Clayton, C. W. 354	Ezuman, H. C. 108	
Close, R. C. 315	Fa'aumu, S. 137	
Cole, J. S. 86	FAO 109, 110, 111	
Connell, J. 87	Ferentinos, L. 112, 222, 316, 337, 350	
Cooke, L. R. 225	Firman, I. D. 113, 114, 184	
Cotejo, F. R. 288	Fleming, E. 77	
Coursey, D. G. 88, 89	Fonoti, P. 115, 116, 119, 158, 160, 161, 372	
Cox, P. G. 90, 91, 92, 93, 94, 95	Frison, E. A. 450	
Craswell, E. T. 313, 401	Fullerton, B. 117	
Darie, A. 169, 210, 211	Fullerton, R. A. 102, 118, 119	
Das, N. 123	Gallegly, M. E. 354	
Das, P. K. 362	Galloway, L. D. 120	
Das, S. R. 96	Ganua, T. 212	
Dayrit, R. 97	Gaunt, R. E. 315	
Delp, C. 98, 115, 116, 156, 157, 158, 159, 372	Gendua, M. A. 121	
Deln. C. J. 161	Gendua, P. A. 197	
Deshmukh M J 99	Ghani, F. D. 122	
Desimara, 11. 0. 77	Ghodake, R. D. 351	

Ghosh, S. K. 123, 124, 125, 126, 376, 277, 378	Hill, V. 144
5/7, 576	Ho, H. H. 145, 146, 147, 148, 149
Giri, D. 127	Ho, P. K. 150
Gogoi, R. 4	Hohl, H. R. 151, 152, 153
Gollifer, D. E. 128, 129, 130, 131, 185, 186, 187, 188, 189, 190	Holliday, P. 154
Gomez, E. T. 132	Hollyer, J. R. 273, 301, 443
Gomez-Moreno, M. L. 133	Hoponoa, T. 344
Goswami, B. K. 134	Houtondji, A. 155
Goswami, R. K. 4	Hu, Y. N. 148
Greenough, D. 137, 401, 414	Hunter, D. 162, 163, 164, 344
Greenough, D. R. 135, 136	Hunter, D. G. 98, 115, 116, 117, 119, 156, 157, 158, 159, 160, 161, 312, 372
Gregory, P. H. 138	Hunter, J. E. 165
Guaf, J. 371	Hunter, J. H. 354
Guarino, L. 139	Huguo A 2/3
Gunua, T. 169, 170, 171, 372	Пицис, А. 243
Gunua, T. G. 140	Hwang, H. S. 457
Gurinderjit Kaur 39, 40, 50	Hyde, K. 306
Gurr, P. 141	losefa, T. 158, 159, 161, 166, 344
Hall, G. S. 384	Iramu, E. 368, 372
Haq, M. O. 134	Irwin, S. V. 167
Harvev. I. C. 315	Iton, E. F. 403
Hasija S K 50	Ivahupa, S. 3
Haynes, P. H. 403	Ivancic, A. 168, 169, 170, 171, 172, 173, 212, 268, 366
Hazelman, S. 344	Jackson, G. 117
Hicks, P. G. 142	Jackson, G. V. H. 3, 80, 89, 121, 131,
Hill, D. S. 143	139, 169, 170, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,

187, 188, 189, 190, 191, 192, 193, 194, 205, 210, 212, 234, 239, 240, 284, 298	Kulkarni, S. N. 213		
311, 333, 366, 372, 388, 425, 450	Kunimoto, R. K. 165		
Jamieson, G. I. 264	Kurup, G. T. 4, 247, 308, 330		
Johnson, A. 195	Laha, S. K. 127		
Johnston, A. 196	Lakshmi, K. R. 419		
Johnston, M. 121, 197	Lambert, M. 214, 275		
Jos, J. S. 419	Larsen, A. 215		
Kabeerathumma, S. 4, 247, 308, 330	Laviola, C. 354		
Kafi, A. 243	Lebot, V. 216		
Kamlesh 41, 198	Leonian, L. H. 217		
Kao, C. W. 7	Leslie, K. A. 403		
Karafir, J. P. 299	Levela, H. 221, 222		
Karanya, I. 199, 200, 201, 202	Li, Y. D. 451		
Kasamani, C. T. 255	Liang, P. Y. 223		
Kasimani, C. 91, 92, 93, 94, 95	Liang, Z. R. 148		
Kaufusi, P. 167	Liang, Z. Y. 149		
Kay, D. E. 203	Liloqula, R. 218, 219, 220, 221, 222, 294, 295, 296, 297		
Kesavan, V. 62, 331	Lin, C. K. 223		
Khatua, D. C. 127	Liyanage, A. de S. 224		
Killian, A. M. 299	Lucas, J. A. 225		
Ko, W. H. 7, 204, 441, 445, 451	Luthra, J. C. 226		
Kohler, F. 205	Macfarlane, R. 191, 192, 227, 228		
Kokoa, P. 169, 170, 171, 206, 207, 208, 209, 210, 211, 212	MacKenzie, E. 205		
Kranz, J. 320	Maheshwari, S. K. 229		
Kulkarni, G. S. 68	Malaki, I. 230		

Malathi, V. G. 396	Nair, R. B. 348	
Manner, H. 231, 232	Nakamoto, S. T. 443	
Manrique, L. A. 233	Nanaya, K. A. 358	
Matanubun, H. 234	Narula, K. L. 50, 257, 258, 259, 260, 261, 262	
Mathur, P. N. 235, 278, 279	Narzarv, B. D. 4	
Mathura Rai 79	Naskar S R 263	
Matthews, P. J. 236	Nover C C 410	
Mattos, J. K. de A. 237	Number $E = 1.21, 199, 190, 294, 426$	
Mauga, T. 360, 361	Newnook, F. J. 131, 188, 189, 384, 430	
McCully, A. J. 315	Newton, K. 264	
McKenzie, E. H. C. 102, 238, 239, 240	Ngiralmau, M. 265	
McRae, W. 241	O'Connor, B. A. 266 O'Sullivan, J. N. 313, 401	
Mehrotra, R. S. 39, 40, 41, 42, 43, 44,		
45, 46, 47, 48, 49, 50, 257, 258, 259, 260, 261, 262	Okpul, E. 368	
Mendiola, N. 242	Okpul, T. 116, 172, 173, 267, 268, 366, 369, 370, 371, 372, 426	
Menezes, T. 413	Oliver, D. 269	
Messiaen, C. M. 155	Onwueme, I. C. 270, 271	
Metai, A. 159	Ooka, J. J. 272, 273, 274, 275	
Michelmore, R. W. 80	Ososo, E. 3, 173, 366	
Milne, M. 77	Packard, J. C. 276, 277	
Mirza, R. 243	Padmaja, G. 4, 247, 308, 330	
Misipati, P. 224, 380, 381	Paharia, K. D. 235, 278, 279	
Misra, R. S. 229, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 308,	Paiki, F. A. 234, 280, 281, 282, 283, 284, 299	
	Palaniswami, M. S. 4, 247, 308, 330	
Moles, D. J. 85, 255	Palay, L. 155	
Muthappa, B. N. 256		

Palomar, M. K. 285	Pouono, K. 98, 116, 162, 163, 164, 312,
Palti, J. 320	Durana M. S. 214
Palupe, A. 389	Prana, M. S. 314
Pardales, J. R. 286, 287, 288	Price, T. V. 315
Parham, B. E. V. 289, 290	Primo, A. 316
Park, M. 291	Purwanti, H. 317, 318
Parris, G. K. 292	Putter, C. A. J. 319, 320, 321, 322, 323, 324
Patel, M. Z. 293, 294, 295, 296, 297, 298	Quevedo, M. A. 325
Patiasina, J. W. 299	Quitugua, R. J. 326, 327
Paulson, D. D. 300	Raciborski, M. 328
Pellegrin, F. 205	Ragus, L. 329
Pelomo, P. M. 193, 194	Rajendran, P. G. 348
Pena, R. de la 167	Rajesh Kumar 330
Pena, R. S. de la 89, 301, 302	Ramakrishnan, T. S. 397
Peregrie, W. T. H. 303	Ramanujam, T. 348
Petch , T . 304	Ramarao, P. 418
Philemon, E. C. 305, 306	Ramsden, L. 150, 310
Phillip, J. 97	Rangai, S. S. 255, 331
Pillai, P. K. T. 419	
	Rangi, S. S. 332
Pillai, S. V. 4, 247, 307, 308, 309, 330	Rangi, S. S. 332 Rao, V. R. 333, 334
Pillai, S. V. 4, 247, 307, 308, 309, 330 Pinegar, J. A. 189	Rangi, S. S. 332 Rao, V. R. 333, 334 Rasyid, A. 335
Pillai, S. V. 4, 247, 307, 308, 309, 330 Pinegar, J. A. 189 Plucknett, D. L. 89, 108, 128, 189, 214	Rangi, S. S. 332 Rao, V. R. 333, 334 Rasyid, A. 335 Raynor, B. 336, 337
Pillai, S. V. 4, 247, 307, 308, 309, 330 Pinegar, J. A. 189 Plucknett, D. L. 89, 108, 128, 189, 214 Po KiHo 310	Rangi, S. S. 332 Rao, V. R. 333, 334 Rasyid, A. 335 Raynor, B. 336, 337 Reddy, D. B. 338
Pillai, S. V. 4, 247, 307, 308, 309, 330 Pinegar, J. A. 189 Plucknett, D. L. 89, 108, 128, 189, 214 Po KiHo 310 Pone, S. 311	Rangi, S. S. 332 Rao, V. R. 333, 334 Rasyid, A. 335 Raynor, B. 336, 337 Reddy, D. B. 338 Regional Meeting on the Production of Paot Graps 190
Pillai, S. V. 4, 247, 307, 308, 309, 330 Pinegar, J. A. 189 Plucknett, D. L. 89, 108, 128, 189, 214 Po KiHo 310 Pone, S. 311 Poolperm, N. 400	Rangi, S. S. 332 Rao, V. R. 333, 334 Rasyid, A. 335 Raynor, B. 336, 337 Reddy, D. B. 338 Regional Meeting on the Production of Root Crops. 190

Reinking, O. A. 340, 341	Sen, H. 362
Ribeiro, O. K. 106, 342	Seth, L. N. 363
Rincon, H. 298	Sharma, O. P. 213
Robinson, R. A. 343	Shattock, R. C. 225
Rogers, S. 166, 300, 344, 345	Shaw, D. E. 364, 365
Ruimassa, R. 284	Shaw, D. S. 225
Rwimassa, P. M. R. 346	Shideler, F. S. 298
Saelea, J. 220, 221, 222, 298	Siddique, A. M. 100
Saena, T. B. 347	Siddique, M. A. 101
Sahu, A. K. 229	Silbanus, S. 337
Sahu, M. P. 348, 349	Simin, A. 170, 171, 173, 268, 366
Saikia, U. N. 51	Sindhu, I. R. 374
Salam, M. A. 375	Singh, D. 116, 367, 368, 369, 370, 371, 372
Sanderson, F. R. 315	Singh D P 253 254
Sanico, R. T. 325	Singh J R P 349
Santos, G. H. 350	Singh, K. G. 373
Sar, S. A. 351	Singh K P 348 349
Sarejanni, J. A. 352	Singh P N 374
Sato, D. M. 273, 301, 353	Singhal G 374
Savage, E. J. 354	Singal, G. B , P 375
Sawada, K. 355, 356, 357	Sitansu Pan 124 125 126 376 377 378
Sawant, I. S. 358	Sivan P 116 164 368 372 370 380
Sawant, S. D. 358	38 1
Schwanz, V. 345	South Pacific Commission 382, 383
Semisi, S. 163	Stamps, D. J. 384, 436
Semisi, S. T. 359, 360, 361	Stewart, R. B. 385

Sumich, F. N. 386	Tupas, G. L. 424		
Tai, E. A. 403	Tuugasala, S. 313		
Tamori, M. 387	Tyson, J. 119		
Tan, T. 388	Umar, M. 5, 380		
Taufa, L. 426	Umbala, K. G. 418		
Taylor, M. B. 389	Unnikrishnan, M. 419		
Tedder, M. M. 390	Vargo, A. 420		
Teng, P. S 315	Vargo, A. M. 231, 232, 265, 329, 336, 353, 420, 421		
Teng, S. C. 391	Vasquez. E. A. 422, 423		
Tethool, Y. 392	Vasudeva, R. S. 67		
Thaman, R. R. 393	Vasudevan, J. S. 419		
Thammasak, S. 200, 201, 202, 440	Venkateswarlu. M. 419		
Thankappan, M. 307, 308, 309, 348, 394, 395, 396, 419	Villanueva, M. R. 287, 288, 424		
Thistleton, B. M. 38	Wagih, M. 368, 372		
Thomas, K. M. 397	Wagih, M. E. 3, 80, 121, 169, 170, 210, 212, 234, 284, 311, 333, 366, 388, 425		
Thompson, A. 398, 399	426		
Thongjiem, M. 400	Wahi, C. P. 427		
Thorpe, P. 345	Wall, G. 414		
Tilialo, R. 137, 401, 414	Wall, G. C. 428, 429, 430, 439		
Tomlinson, D. L. 402	Waller, J. M. 143		
Trujillo, E. E. 136, 275, 326, 327, 401,	Walton, P. 431		
411, 412, 413, 414, 430, 439	Wang, J. K. 272		
Tsao, P. H. 105, 138, 153, 436, 449	Wanitprapha, K. 443		
Tsatsia, H. 415	Ward, E. 452		
Tucker, C. M. 416, 417	Ward, R. G. 432		

Waterhouse, G. M. 384, 433, 434, 435, 436 Wati, P. 5 Wayi, B. M. 351 Wei, C. T. 437 Weston, W. H., Jr. 438 Wicaksono, B. W. D. 388 Wiecko, A. T. 429, 430, 439 Wilson, K. R. M. 319 Worapan, K. 440 Xu, X. L. 441 Yap, T. C. 442 Yapa, L. G. G. 5, 380 Yirgou, D. 385 Yokoyama, K. M. 443 Yu, J. Y. 444, 445 Yu, Y. N. 149 Yusuf, R. 446 Zahid, M. I. 134 Zentmyer, G. A. 342, 447, 448, 449 Zettler, F. W. 450 **Zhang, K. M.** 451 Zheng, F. C. 451, 452 Zhuang, W. Y. 148, 149

Subject Index

American Samoa 64, 65, 135, 136, 137, 141, 401, 410, 420

antagonists 260, 376

antibiotics 39, 43, 261

atolls 192

Bangladesh 378

bibliographies 431

biological control 103, 234, 257, 358, 376

biology 69, 70, 109, 143, 154, 175, 180, 225, 266, 270, 352, 450

Bougainvillea speciabilis 375

Brazil 237

breeding 24, 25, 28, 31, 32, 80, 95, 98, 115, 116, 139, 156, 158, 160, 161, 168, 173, 193, 194, 208, 267, 293, 294, 297, 301, 307, 312, 351, 368, 370, 372, 380, 381

Brunei 303

chemical control 1, 19, 20, 21, 24, 36, 38, 42, 45, 46, 49, 51, 56, 57, 58, 61, 85, 90, 91, 92, 96, 103, 125, 129, 135, 137, 141, 188, 189, 198, 199, 201, 229, 234, 252, 261, 273, 281, 325, 335, 346, 348, 349, 360, 361, 386, 409, 412

China 82, 148, 149, 339, 391, 437, 451

Colocasia antiquorum 374, 375

Colocasia nymphaeifolia 127

conferences 30, 34, 112, 118, 382, 383

conidia 435

control 10, 18, 27, 41, 50, 72, 76, 163, 164, 174, 175, 179, 180, 182, 191, 205, 270, 271, 272, 275, 292, 299, 337, 345, 408

crop production 233

cultural control 1, 19, 36, 89, 336, 428

culture 108

culture media 86, 101, 342

description 433

disease resistance 4, 20, 21, 31, 32, 59, 79, 99, 100, 121, 125, 134, 136, 142, 150, 166, 169, 170, 171, 181, 185, 197, 209, 210, 211, 212, 219, 221, 235, 236, 249, 254, 268, 283, 285, 286, 295, 296, 298, 308, 309, 310, 318, 319, 322, 330, 343, 372, 403, 410, 413, 414, 419, 423, 426, 428, 430, 439

distribution 71, 447, 448

economics 65, 75

elimination 425

environmental factors 378, 404, 406, 409

enzymes 43, 46, 47, 49, 126

epidemiology 117, 138, 258, 320, 321, 404

eradication 191

estimation 183

Ethiopia 385

Federated States of Micronesia 97, 177, inoculation 441 231, 316, 336, 337, 350, 409, 421, 430 integrated pest management 107 Fernando Poo 133 intercropping 5 Fiji Islands 230, 289 Irian Java 83, 234, 281, 282, 284, 299 food security 300 isolation 86 genetic resources 9, 12, 29, 33, 34, 333, Japan 14, 387 334, 367, 379 keys 37, 145, 146, 384, 434 genetic variation 207, 366 leaf number 93, 95 genetics 170, 216 life cycle 238 germplasm transfer 184 low-input agriculture 337 growth 217 Malaysia 122, 373, 398, 399, 442 Guam 136, 232, 428, 430, 438, 439 maps 71 Guinea Bissau 133 Marshall Islands 407 Hawaii 22, 23, 73, 136, 204, 236, 292, 302, 353, 409, 412, 443 mating types 7, 119, 148, 199, 204, 259, 444, 445 heterothallism 354 Melanesia 53 history 277 metabolic inhibitors 40 homeopathic drugs 198 Micronesia 54 homothallism 354 molecular markers 80, 167 Hong Kong 195 monoculture 287 hyperparasitism 376 mutants 172 identification 145, 146, 238, 274 Myanmar 15, 363 India 4, 26, 51, 66, 67, 68, 79, 81, 96, 99, 120, 127, 213, 226, 241, 244, 246, 247, nematicides 155 248, 249, 251, 253, 254, 259, 263, 278, 279, 309, 362, 375, 376, 394, 396, 397, Nepal 60 418 Northern Mariana Islands 329, 407, Indonesia 104, 234, 282, 299, 314, 318, 411 328, 388, 392, 446 nutrition 151, 152, 153, 223, 414

Pacific Islands 8, 13, 29, 52, 72, 102, 110, 111, 113, 114, 115, 116, 119, 163, 174, 178, 184, 191, 192, 205, 214, 216, 227, 275, 311, 334, 372, 379, 403, 407, 414, 429

Pakistan 243

Palau 177, 240, 265, 407

Papua New Guinea 3, 16, 37, 38, 61, 62, 63, 83, 84, 87, 90, 91, 139, 140, 172, 173, 206, 207, 208, 209, 215, 255, 256, 264, 267, 268, 269, 276, 305, 306, 315, 331, 332, 351, 364, 365, 366, 367, 368, 369, 370, 371, 393, 402, 426

pathogenesis 47

pathology 50

pest risk analysis 227

phenolic compounds 48

Philippines 107, 132, 242, 287, 340, 341, 416, 424

phylloplane fungi 260, 374

physiology 40, 44, 45, 50, 101, 123

Piper betle 241

plant density 188, 228

plant growth regulators 49

plant nutrition 401

planting date 244

polymerase chain reaction 452

Polynesia 54

postharvest decay 27, 88, 89, 189, 203, 271, 325

quality 162

relative humidity 405 reports 9 research 35, 78, 250 reviews 50, 124, 395, 416 Samoa 1, 2, 5, 10, 11, 20, 21, 75, 76, 77, 98, 144, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 181, 182, 224, 230, 286, 300, 312, 313, 323, 324, 338, 344, 345, 347, 359, 381, 408, 410, 432 screening 119 selection 121 sexual reproduction 444, 445 soil 262, 326, 377 Solomon Islands 17, 19, 24, 25, 35, 55, 87, 128, 129, 130, 131, 139, 168, 185, 186, 187, 189, 190, 193, 194, 196, 215, 218, 219, 220, 221, 222, 228, 239, 290, 293, 294, 295, 296, 297, 390, 415 Somalia 74 South East Asia 110 spacing 19 **sporangia** 101, 123 spore dispersal 165 spore germination 123, 245 sporulation 404, 406 Sri Lanka 291, 304, 416 storage 89, 186, 214 survival 131, 262, 326, 377

susceptibility 172

symptoms 18

Taiwan 7, 145, 147, 355, 356, 357

taxonomy 50, 105, 106, 147, 238, 352, 384, 417, 433, 434, 436, 449, 452

temperature 101, 326, 377, 405

testing 169, 212, 285, 322

Thailand 199, 200, 201, 202, 298, 400, 440

tissue culture 176, 389, 425

Tonga 6

trade 77, 230

ultrastructure 200

Vanuatu 12

varietal reactions 2, 61, 97, 99, 104, 129, 162, 253, 263, 279, 327, 350, 362, 369, 371, 415, 422, 429

virulence 126

vitamins 427

water potential 326, 377

wild plants 173

Xanthomonas campestris 402

yams 237

yield 288

yield losses 93, 94, 247, 248, 251, 252, 315, 388, 392, 423

zoospores 245, 326, 410

Benefits and limits of an important biotech tool FAO publishes study on marker-assisted selection

http://www.fao.org/newsroom/en/news/2007/1000630/index.html

24 July 2007, Rome -*The biotechnology tool of marker-assisted selection (MAS) has raised high expectations for increasing genetic progress through breeding. Some experts have even argued that the application of MAS could "revolutionize" the way varieties and breeding stock are developed.*

In a new comprehensive assessment (Marker-Assisted Selection, Rome 2007), FAO emphasizes that MAS has enormous potential but notes that the technology has not yet delivered its expected benefits to farmers in developing countries. Shivaji Pandey, Chairperson of the FAO Working Group on Biotechnology, gives his view on MAS.

What is marker-assisted selection (MAS)?

MAS is a biotechnology tool that could greatly accelerate conventional breeding of crops, livestock, farmed fish and trees. Scientists are using MAS to genetically improve certain characteristics or traits (productivity, disease resistance, quality etc.) that are important for farmers. MAS makes it possible to select traits with greater accuracy and to develop a new variety quicker than in the past.

What is the difference between MAS and genetically modified organisms (GMOs)?

MAS and genetic modification are different biotechnologies. MAS allows desirable genes to be "marked" or tagged so they can be selected within the breeding population, while GMOs are the result of the transfer of a desirable gene or genes from one species to another.

New plant varieties or improved animal breeds resulting from MAS do not require a specific legislative framework. The complicated approval process required for GMOs does not apply for MAS - its costs of release are therefore lower.

In addition, the technology is not controversial so there is no problem with public acceptance. Indeed, one of the drawbacks of the intense debate that has taken place in recent years over the benefits and risks of GMOs is that it has overshadowed the potential role that other, non-GMO, biotechnologies, such as MAS, may play for food and agriculture.

What is the potential of MAS?

Since MAS first became a practical reality about 20 years ago, it has now gone past the research and development stage and is being applied in the field. For example, it is currently being used in dairy cattle breeding programmes in France and Germany, and rice varieties with improved bacterial blight resistance have being developed using MAS approaches and released in India and Indonesia.

However, initial enthusiasm and optimism have been tempered by the realization that it is more difficult and takes longer than originally thought before genetic improvement of traits using MAS can be realized. The considerable resources invested in this technology have been mainly concentrated in the industrialized world, and MAS has not yet delivered its expected benefits to farmers in developing countries.

What are the costs associated with MAS?

MAS requires quite a sophisticated infrastructure and considerable investments: including specialized equipment, electricity, laboratory design and management, data handling and statistics, and Internet connectivity. Efficient and effective application of MAS also requires well-qualified staff and good funding. It should therefore be used where there is a clear advantage over traditional selection techniques.

What are the constraints countries are facing applying MAS?

Apart from the investments required, a serious constraint that most countries face in applying MAS is the lack of a national policy on science and technology and on biotechnology. This is essential to provide guidance on the strategic planning, monitoring and evaluation of biotechnologies, including MAS, for food and agriculture. In addition, MAS should only be applied when well-structured breeding programmes are already in place, which is often not the case in many developing countries.

How could the application of MAS contribute to hunger and poverty reduction?

Most of the around 820 million hungry people in developing countries live in rural areas where people's livelihoods depend on agriculture. This means that investing in agriculture, and more broadly in rural development, must be at the heart of any strategy for hunger and poverty reduction. While the measures needed certainly go well beyond the issue of producing more food and agricultural products, achieving greater yields and higher value products from the same plot of land or enterprise, through, for example, appropriate application of technologies such as MAS, must be a key ingredient for the great majority of developing countries.

Contact:

Erwin Northoff Media Relations, FAO erwin.northoff@fao.org (+39) 06 570 53105 (+39) 348 252 3616

To obtain a copy of the report please send an e-mail to nadia.sozzi@fao.org

EFFECT ON SOIL BIOLOGICAL ACTIVITIES DUE TO CULTIVATION OF Bt. COTTON

by

Navdanya

Navdanya A-60, Hauz Khas New Delhi – 110016 Phone : 91-11-26535422 / 26532124 Email : <u>vandana@vandanashiva.com;</u> <u>navdanya@gmail.com</u> Website : <u>www.navdanya.org</u>

1

EFFECT ON SOIL BIOLOGICAL ACTIVITIES DUE TO CULTIVATION OF Bt COTTON

A survey was conducted under Bt cotton growing areas of Vidharbha. Twenty five fields were selected where Bt cotton is growing for the last three years, which was compared with the adjoining fields where either other varieties of cotton was growing or any other crops were growing during that period. The areas covered between Nagpur, Amravati, Wardha and adjoining areas. The sampling was done in 2nd week of December during the crop harvest. The effect on microbial population was recorded as Table 5. Table 5. Effect on microbial population due to cultivation of Bt cotton

Microoganisms	Control soil	Bt cotton	% increase (+)	Level of
	(Non Bt	plots	or decrease (-)	significant
	Cotton plots)			_
Actinomycetes ($\times 10^5 \text{ g}^{-1}$)	52.5	43.6	- 17.0	**
Bacteria (× 10^6 g^{-1})	85.9	73.7	- 14.2	*
Fungi (× 10 ⁴ g ⁻¹)	31.2	31.3	+ 0.3	NS
Nitrifiers ($\times 10^2 \text{ g}^{-1}$)	19.7	18.9	- 4.1	NS

 $^{\rm a}$ Average of 25 plots; NS - Non significant; * significant at 5% level; ** significant at 1% level

The results clearly demonstrated significant decline in actinomycetes (17%) and bacterial (14.2%) population in Bt cotton plots. No change in fungi population was noticed and there was insignificant decline (-4.1%) in nitrifiers population.

2

A significant decline in total microbial biomass (8.9%) was also noticed due to cultivation of Bt cotton (Fig. 6). The results pointed out that Bt cotton adversely affected on some group of microorganisms, which ultimately helps in reduction to microbial biomass.

The effect on different beneficial soil enzymes such as dehydrogenase, esterase, acid phosphatase, alkaline phosphatase and nitrogenase was studied under Bt cotton growing areas.

Table 6. Activities of soil beneficial enzymes^a due to the cultivation of Bt cottons

Types of enzymes	Control soil (Non	Bt cotton	% increase	Level of
·	Bt cotton plots)	plots	or decrease	significance
Dehydrogenase	6.52	5.85	- 10.3	*
$(p \text{ kat } g^{-1})$				
Esterase (EU \times 10 ⁻⁵)	45.23	41.79	- 7.6	NS
Acid phosphatase $(EU \times 10^{-5})$	29.75	21.85	- 26.6	***
Alkaline phosphatase $(EU \times 10^{-5})$	32.15	31.92	- 0.7	NS
Nitrogenase (n mol $C_2H_4 h^{-1}$)	439	340	- 22.6	**

^aAverage of 25 plots; NS – Non significant; * significant at 5% level; ** significant at 1% level; *** significant at 0.1% level

The result showed (Table 6) significant reduction in acid phosphatase (26.6%), nitrogenase (22.6%) and dehydrogenase (10.3%) activities under Bt cotton growing fields. A slight reduction in esterase (7.6%) and alkaline phosphatase (0.7%) activity was observed but the results are not statistically significant. The present results clearly demonstrated that Bt cotton cultivation definitely affect soil biological health especially beneficial microorganisms (actinomycetes, bacteria) and enzymes (acid phosphatase, nitrogenase and dehydrogenase).

Catholic Healthcare West Presses Suppliers to Prohibit Animal Cloning and Genetically Engineered Foods

Marketwire News Releases Published: 01/06/09 01:13 PM EST

Leading Catholic Hospital System Takes Action for Sustainable Food Production SAN FRANCISCO, CA -- (Marketwire) -- 01/06/09 -- Catholic Healthcare West (CHW) announced today that its food purchasing dollars will be focused on promoting sustainable food production practices, in part by seeking alternatives to foods produced with genetically engineered sugar, as well as meat and dairy produced with animal clones. The CHW position was developed in recognition of the serious health and environmental concerns these technologies raise and the threat they pose to healthier and more sustainable food production options. Among the concerns CHW is raising about genetically engineered and cloned foods are genetic contamination, increased pesticide use, animal cruelty, and the deep ethical and moral issues associated with these untested new technologies.

CHW recently asked eight of its largest food suppliers for their policies on genetically engineered sugar beets, which are being planted for commercial use for the first time this year. Results from the survey found that its suppliers would prefer non-genetically engineered sugar beets. Only Diamond Crystal indicated their intent to avoid buying genetically engineered sugar and that they will seek out suppliers that do not use genetically engineered foods through a validation process. CHW intends next to survey its meat and dairy suppliers on their potential use of animal cloning since the U.S. FDA recently decided to allow marketing of food from animal clones.

"We are working with our purchasing organization, Premier, and developing relationships with allied healthcare partners in looking for food companies that will provide us with meat and dairy products that are not from animal cloning, and foods that are made without genetically engineered sugar beets," stated Pat Burdullis, CHW's administrator of non-clinical supply chain contracts. "If these same food companies can provide foods that are natural and non-genetically engineered for their European customers, we believe they should provide us with the same level of service."

Genetic engineering and animal cloning are controversial in food production, since the technologies have not been subject to long-term safety testing and could create irreversible environmental damage. Genetically engineered crops can contaminate natural foods and have promoted the use of herbicides that may be harmful to human health and natural systems. Scientists say that animal clones are often abnormal and suffer from a host of often painful defects. A New England Journal of Medicine article stated that, "[It] may be exceedingly difficult, if not impossible, to generate healthy cloned animals."

"Genetic engineering and animal cloning are in direct conflict with our sustainable food service vision and corporate sustainability goals," stated Sr. Mary Ellen Leciejewski, CHW's ecology program coordinator. "We have numerous unanswered concerns about the imminent introduction of genetically engineered sugar beets and marketing of food from animal clones. Previous genetically engineered crops have increased pesticide use, and animal cloning is a cruel and unnecessary technology in meat and dairy production. Our aim is to promote alternative approaches that produce foods that are safer and healthier for our patients, staff, and visitors and that can sustain the farmers and food producers in our communities."

CHW has successfully advocated with its suppliers for safer, more environmentally friendly products, most recently with regard to its PVC/DEHP-free IV products now being provided by B.Braun.

With respect to food production, CHW is advocating for public policies that meet the following safeguards:

- -- Before marketing, genetically engineered food or food from animal cloning must be fully evaluated through independent, peer-review for any effects on animal welfare, human health, and the environment.
- -- Foods with genetically engineered ingredients and foods from animal cloning (including foods from the offspring of clones) must be labeled as such.
- -- Genetically engineered seeds and plants are rigidly separated from other seeds and plants so that natural foods (those produced by nongenetically modified techniques) are protected from contamination; cloned animals and their offspring must be rigorously tracked throughout the food chain.
- -- Genetic engineering patent holders are held legally liable for contamination of non-genetically engineered crops and growers are protected when their crops are contaminated by genetically engineered crops.

About Catholic Healthcare West

Catholic Healthcare West (CHW), headquartered in San Francisco, CA, is a system of 41 hospitals and medical centers in California, Arizona and Nevada. Founded in 1986, it is one of the nation's largest not-for-profit healthcare systems and the largest Catholic healthcare system based in the Western United States. CHW is committed to delivering compassionate, high-quality, affordable health care services with special attention to the poor and underserved. The CHW network of nearly 10,000 physicians and approximately 53,000 employees provides health care services to more than five million people annually. In 2008, CHW provided \$967 million in charity care and unsponsored community benefit. For more information, please visit our website at <u>www.chwHEALTH.org</u>.

Contact: Tricia Griffin (415) 438-5524

1063 names on the petition

Supporters of HB1663HD1, with amendments to return bill to original HB1663 Hearing before Senate Committee on Energy and Environment, March 19, 2009, 3:45pm Rm 2:

<u>First Name</u>	<u>Last Name</u>	<u>Town</u>	<u>State</u>	<u>Zipcode</u>
Ephrosine	Daniggelis	Honolulu	HI .	96839
Ann	Egleston	Honolulu	HI	96839
Markus	Faigle	Honolulu	HI	96839
Graceson	Ghen	Honolulu	HI	96839
Kapa	Oliveira	Honolulu	HI	96839
Rosemary	Cuccia	Honolulu	HI	96830
Mark Alapaki	Luke	Honolulu	HI	96828
Michele	МсКау	Honolulu	HI	96828
Michael	Bernardini	Honolulu	HI	96827
Noel	Barrett-Tau	Honolulu	HI	96826
Scott	Bullock	Honolulu	HI	96826
Saw	Ching	Honolulu	HI	96826
Garid	Faria	Honolulu	HI	96826
suzanne	garrett	honolulu	HI	96826
elizabeth	kane	honolulu	HI	96826
Kealii	Makekau	Honolulu	HI	96826
Carol	Murry	Honolulu	HI	96826
Naoko	Nelson	Honolulu	HI	96826
Suzanna	Ohoiner	Honolulu	HI	96826
Gordon	walker	honolulu	HI	96826
William	bryant	honolulu	HI	96825
Vickie	Innis	Honolulu	HI	96825
Dwynn	Kamai	Honolulu	HI	96825
B.A.	McClintock	Honolulu	HI	96825
Sherryl	Royce	HOnolulu	HI	96825
Carol	Viquelia	Honolulu	HI	96825
Kawika	McKeague	Honolulu	Ш	96823
Molly	?	Honolulu	HI	96822
Dan	Amato	Honolulu	HI	96822
Harvey	Arkin	HONOLULU	HI	96822
Lynette	Awaya	Honolulu	HI	96822
Dayle	Bethel	Honolulu	HI	96822
Diana	Bethel	Honolulu	HI	96822
Alana	Bryant	Honolulu	HI	96822
carla	buscaglia	Honolulu	HI	96822
Lisa	Cripe	Honolulu	HI	96822
Simone	Derow-Ostapowicz	Honolulu	HI	96822
Stephen	Dinion	Honolulu	HI	96822
Pete Shimazaki	Doktor	Honolulu	HI	96822
Christy Rose	Ferreira	Honolulu	HI	96822
Fred	Flores	honolulu	HI	96822
Mark	fontaine	Honolulu	HI	96822
Lisa	Galloway	Honolulu	HI	96822
Caroline	Ginnane	Honolulu	н	96822
Regina	Gregory	Honolulu	HI	96822
Alison	Hartle	Honolulu	HI	96822
David	Kendrick	Honolulu	HI	96822

paahana	kincaid	Honolulu	HI	96822
Cindy	Lance	Honolulu	HI	96822
Spencer	Leineweber	Honolulu	HI	96822
Kevin	Nesnow	Honolulu	HI	96822
Jeremy	Percich	Honolulu	HI	96822
Claudia	Portocarrero	Honolulu	HI	96822
Evan	Silberstein	Honolulu	HI	96822
Mary	Spadaro	Honolulu	HI	96822
David	Strauch	Honolulu	HI	96822
Christine	Walters	Honolulu	HI	96822
Liza	Williams	Honolulu	HI	96822
mary	Manley	honolulu	HI	96821
Brandie	Markos	Honolulu	HI	96821
Kekoa	Wong	Kuliouou	HI	96821
J.	Hakuole	Honolulu	HI	96819
Ka'ohua	Lucas	Honolulu	HI	96819
Aida	San Miguel	Honolulu	HI	96819
Teri	Skillman-Kashvan	HONOLULU	HI	96819
Kapua	Francisco	honolulu	HI	96818
Haunani	Francisco	Honolulu	Н	96818
Kuuleilani	Reves	Honolulu	मा मा	96818
shanelle	Solomon	Hopolulu	 ਸਾ	96818
Kimo	2	hopolulu	 	96817
Cathie	alana	honiolulu	 	96817
Cristian	Fllouri	honolulu	 	96817
Usidi	Lilaun	Honolulu		06917
Komolyo		Honolulu		90017
Kamaka	Jingao	honolulu		90017
Deen de	Kea	Ilensiulu	 	90017
Dienua	Kwoli	Honolulu		90817
Tahr		999 Henelulu		90017
Jonn	W ITECK	Honolulu	HI	90817
Karsten		Honolulu		90817
Rosemary	Bak	Honolulu	HI	90810
Eric	Brandt	Honolulu	HI	90810
Victor	Brandt	Honolulu		96816
Jeremai	Cann	Honolulu	HI	96816
Deanna	Chang	Honolulu	HI	96816
Tara	Compehos	Honolulu	HI	96816
Zahava	Czara	Honolulu	HI	96816
Chris	Derauf	Honolulu	HI	96816
joel	fischer	honolulu	HI	96816
Barb	Forsyth	Honolulu	HI	96816
vanesa	furnari	honolulu	HI	96816
Rino	Geremen	honolulu	HI	96816
Moses	Goods	Honolulu	HI	96816
Kalani	Kalima	Honolulu	НІ	96816
Johnette	Kaluna	Honolulu	HI	96816
Pualani	Kauila	Honolulu	<u> </u>	96816
clawz	lee	hon	HI	96816
Leiana	Lobre	Honolulu	HI	96816
Valerie	Loh	Honolulu	HI	96816

Sheri	Lyles	honolulu	Ш	96816
Raymond	Madigan	Honolulu	HI	96816
Stephen & Kamilla	Maii	Honolulu	HI	96816
Kanoa	Nelson	Honolulu	HI	96816
Gordon	Noice	Honolulu	HI	96816
Sheila	O'Malley	Kaimuki	HI	96816
iamie	oshiro	honolulu	HI	96816
Sharlvnn	Paet	Honolulu	HI	96816
Benton Kealiëi	Pang	Honolulu	–––– ਸਾ	96816
Ikaika	Pestana	Honolulu	HI	96816
Cha	Smith	Honolulu	HI	96816
A. Ku`ulei	Snyder	Honolulu	HI	96816
Iris	Takata	Honolulu	HI	96816
Brett	Thomas	Honolulu.	HI	96816
Ruth	Uemura	Honolulu	HI	96816
Kehaulani	Wong	Hopolulu	HI	96816
Rose	Benjamin	Honolulu	HI	96815
Marie	Brown	Honolulu	H	96815
Michael	Dalv	Honolulu	H	96815
Debbie	Millikan	Hopolulu	 ਸ	96815
Kim	Morishige	Hopolulu	H	96815
Ruth	Puta	Honolulu		96815
Aleo	Ruta Schechter	Honolulu		06915
Julia	Scheenter	Honolulu	 	90815
Julie Extorm	Silliana	Honolulu		90815
Longlig	Williams	Honolulu		90813
Tim	W IIIIains	HIIO		90813
1 1111 Danaa	Drause Llowenton	Honolulu		90814
Renee	mampion Wintston	Honolulu		90814
Racher	winkler	Honolulu, Hi		90814
	yurkievich	Ilenshilu		90814
Aukai	(Kapa)	Honolulu		90813
Telene	Communication Communication	Honolulu		90013
Iokepa	Casumbai-Salazar	honolulu		90813
Jaime		TTanahulu		90813
Juanita	Kawamoto	Honolulu		90813
Edward	Kenney	Honolulu		90813
		Honolulu		90813
Clayton		Honolulu	HI	96813
Joan	Matsukawa	Honolulu	HI	90813
Malama	Minn	Honolulu		96813
Julia	Morgan	Honolulu	HI	96813
Laura	Quintai	Honolulu		96813
Danae	Souza	Honolulu		96813
Diane	1 exidor	Honolulu	HI	90813
Monica	waiau	Honolulu		96813
Brett	Waipa	Honolulu	HI	96813
PALANI	VAUGHAN	HONOLULU	HI	96806
Shawn	White	Honolulu	HI	96804
Janelle	Akiona	Waipahu	HI	96797
Karen	Awong	Waipahu	HI	96797
Leilani	Benson	Waipahu	HI	96797

Mimi	Forsyth	Waipahu	HI	96797
Felicia	Waialae	Waipahu	HI	96797
clayton	falvey	waimea	НІ	96796
Lisette	Langlois	Waimea	НІ	96796
Kane	Turalde	Waimea	Ш	96796
Meghan	Au	Waimanalo	HI	96795
Mary	Baker	Waimanalo	HI	96795
Anela	Gueco	Waimanalo	HI	96795
Karen	Holman	Waimanalo	HI	96795
Dorothea	Kahiapo	Waimanalo	HI	96795
Laurie	Kahiapo	Waimanalo	HI	96795
CHRISTINE	Kauahikaua	WAIMANALO	 HI	96795
Jackie	Remington	Waimanalo	<u>н</u>	96795
Curt	Sumida	Waimanalo	HI HI	96795
Virginia	Walden	Waimanalo	HI HI	96795
Alvson	Barrows	Wailuku	н	96793
Barbara	Best	Wailuku	<u>н</u>	96793
marti	huckner	wailuku	HI	96793
Christing	Chang	Wailuku	<u>н</u>	96793
Kyle	Elizares	Wailuku	ा॥ मा	96793
Michelle	Hillen	Wailuku	<u>मा</u>	96793
Sunnia	Huon	Wailuku		90793
Dehaaa		Wailuku		90793
vincont	mino	Wailuku Maui		90793
Vincent	nina Dellecuine	Walluku Maul		90793
Mauraan	Penegrino	Waikapu		90793
Danhas O	Reggie	Walluku		90/93
Daphne O.	Sing	Walluku		90793
paul Danial	Strauss	Walluku	Fil	96793
Daniel	Tanaka Tanaka	w alluku		90793
Chris	Taylor			96793
Faith	Tengan			96793
Gary	Wiseman	Wailuku	HI	96793
Bill	Akiona	Waianae		96792
	Alfapada	Waianae	HI	96792
Sheldon	Brown	Wailuku	HI	96792
James	Clarke	Waianae	HI	96792
Chantel	Clarke	Waianae	HI	96792
Eva Kapelaonaalii	Collins	Wai?anae	HI	96792
Vince	Dodge	Wai anae	HI	96792
Britany	Edwards	Wai'anae	HI	96792
Florence	Eli-Adam	Waianae	HI	96792
arlen	guieb	waianae	HI	96792
arlen	guieb	waianae	HI	96792
Samuel	Kapoi	Waianae	HI	96792
Kapua	Keliikoa-Kamai	Waianae	HI	96792
P	Ling	Waianae	HI	96792
P	Ling	Waianae	Ш	96792
TammyLeigh	Mahuka	Waianae	Ш	96792
Joseph	Peters-Holokahi	waianae	HI	96792
Ileana (Haunani)	Ruelas	Waianae	HI	96792
chaunnel	salmon	Waianae	HI	96792

Shane	Silva	Waianae	HI	96792
kimo	stowell	Honolulu	HI	96792
Natashja	Tong	Waianae	HI	96792
Alexander	Uesugi	waianae	HI	96792
ANN	Walenta	WAIANAE	HI	96792
Scott	Foster	Waialua	HI	96791
Nina	Puhipau	Waialua	HI	96791
Barbara	Bogorad	Kula	HI	96790
Anastasia	Gilliam	Kula	HI	96790
Hilary	Harts	Kula	HI	96790
Bentley	Kalaway	Kula	HI	96790
Lisa	Raymond	Kula	HI	96790
Faith	Rose	Kula	HI	96790
julie	signore	kula	HI	96790
stephen	skogman	kula	HI	96790
Annjulie	Vai	Kula	HI	96790
melody	Zeitler	kula	HI	96790
Chana	Dudoit	Mililani	НІ	96789
silva	ricky	mililani	НІ	96789
Christine	Putzulu	Wahiawa	НІ	96786
Mahealani	Carvalho	Volcano	НІ	96785
Robert	Frutos	Volcano	НІ	96785
Cvnthia	Gillette-Wenner	Volcano	HI	96785
bill	lewis	Volcano	HI	96785
katharine	madiid	volcano	HI	96785
kamuela	Moraes	volcano	HI	96785
Dita	Ramler	Volcano	HI	96785
David	Johnston	Puuhene	HI	96784
Raphiell	Nolin	Puunene	HI	96784
Renate	Schaff	Pu'unene	HI	96784
Haley Ann	Bufil	Pepeekeo	HI	96783
Camillia	Elavvan	Pepeekeo	HI	96783
Anika	Borden	Pearl City	Н	96782
Summer	Faria	Pearl City	НІ	96782
pono	kealoha	Pearlcity	HI	96782
Pono	Kealoha	Pearlcity	HI	96782
iohn	maple	Papaikou	HI	96781
kctherine	Ross	Panaikou	HI	96781
Harvest	Edmonds	Papa'aloa	HI	96780
hannah	bernard	naia	HI	96779
Miranda	Camp	Paia	HI	96779
Tia	Christensen	Paia	HI	96779
Iune	Davis	Paia	HI	96779
gabriel	donihi	naia	Н	96779
Eliza	Goodhue	Paia	HI	96779
Marie-Eve	Hoheika	naia	Н	96779
Arnold	Kotler	Paia	HI	96779
Bobbi	Lemnert	Paia	HI	96779
Airielle	Pearson	Paia	Н	96779
IASON	SCHWART7	PAIA	HI HI	96779
Kim	Young	Paia	HI	96779
	1	1	1 11	

I	AM	Pahoa	HI	96778
aaron	ANDERSON	pahoa hi,	HI	96778
Satya	Anubhuti	Pahoa	HI	96778
Theodore	Banta	Pahoa	HI	96778
John	Begg	Pahoa	HI	96778
Clive	Cheetham	Pahoa	HI	96778
Janet	Codispoti	Pahoa	HI	96778
Chris	Costa	Pahoa	HI	96778
Luella	Crutcher	Pahoa	HI	96778
DALE	DAY	РАНОА	HI	96778
normand	dufresne	pahoa	HI	96778
Donna	Fischer	Pahoa	HI	96778
Paulette	Grube	Pahoa	НІ	96778
Roger	Harris	Pahoa	HI	96778
Debra	Kaplan	Pahoa	HI	96778
Dana	Keawe	Pahoa	HI	96778
Ann	Kobsa	Pahoa	HI	96778
Diane	Koerner	Pahoa	HI	96778
Gemma	Lila	Pahoa	HI	96778
Sabrina	Mata	Pahoa	HI	96778
Tracy	Matfin	Pahoa	HI	96778
Elizabeth	McCormick	Pahoa,	HI	96778
Catherine	Okimoto	Pahoa	HI	96778
Sheryl	Palmer	Pahoa	HI	96778
Deva	Sage	Pahoa	HI	96778
Rene	Siracusa	Pahoa	HI	96778
Robin	Stetson	Pahoa	HI	96778
Justin	Wagner	Pahoa	HI	96778
David	Webb	Pahoa	HI	96778
Jason	Winnett	Kalapana	HI	96778
liza	franzoni	paauilo	HI	96776
barton	susan	O'okala	HI	96774
james	patitucci	naalehu	HI	96772
Richard	Powers	Naalehu	HI	96772
Leilani	Resureccion	Naalehu	HI	96772
alison	yahna	na'alehu	HI	96772
Kanoe	DeRego	Mountain View	HI	96771
Rev. Susan	Sanford	Mountain View	HI	96771
Richard	Harder	Maunaloa	HI	96770
mark	jacobs	maunaloa	HI	96770
Steve	Morgan	Maunaloa	HI	96770
Cheryl	Sakamoto	Maunaloa	HI	96770
darlene	toth	maunaloa	HI	96770
Phil	Keat	Makaweli	HI	96769
Barnaby	Benton	Makawao	HI	96768
courtney	Bruch	Makawao	HI	96768
Chasity	Cadaoas	Pukalani	HI	96768
Maha	Conyers	Makawao	HI	96768
Rosa	Enriques	makawao	HI	96768
Susan	Goldberg	Makawao	HI	96768
Suzzana	Goodwin	Makawao	HI	96768

٠

Teri	Holter	Makawao	HI	96768
Momi	Kaikala	Pukalani	HI	96768
Jennifer	Kane	Makawao	HI	96768
randy	keller	Makawao	HI	96768
Laurel	Latimer	Makawao	НІ	96768
pete	sayer	makawao	HI	96768
Melisa	Schwarm	Makawao	HI	96768
Sydney	Seaver	Makawao	HI	96768
Albert	Sikirdji	Makawao	HI	96768
Kathleen	Soule	Makawao	HI	96768
Tristen	Wanke	makawao	HI	96768
Judith	Waters	Makawao	HI	96768
patricia	westbrook	Makawao	HI	96768
David	Yoshida	Pukalani	HI	96768
Nameaaea	Hoshino	Lahaina	HI	96767
Judy	Dalton	Lihue	HI	96766
elaine	durban	puhi	HI	96766
danitza	galvan	lihue	HI	96766
Donald	Heacock	Lihue	HI	96766
Miki	kaipaka	Lihue	HI	96766
Walter	Maza	Puhi	HI	96766
Richard	Miller	Lihue	HI	96766
Dick	Miller	Lihue	HI	96766
Michaella	Mintcheff	Lihue	HI	96766
Nina	Monasevitch	Lihue	HI	96766
U'ilani	Nakagawa	lihue	HI	96766
Lei ?Ilima	Rapozo	L?hu`e	HI	96766
Healani	Trembath	Lihue, Kauai	HI	96766
Lynlie	Waiamau	Lihue	HI	96766
Jonah	Jensen	Lawai	HI	96765
Eleanor	Snyder	Lawai	HI	96765
ronna	mceldowney	laupahoehoe	HI	96764
robert	mceldowney	laupahoehoe	HI	96764
Ronna	McEldowney	Laupahoehoe	HI	96764
Randy	Bartlett	Lahaina	HI	96761
wayne	cochran	lahaina	HI	96761
ELLE	COCHRAN	laHAINA	HI	96761
Kathy	Corcoran	Lahaina	HI	96761
Deborah	DiPiero	Lahaina	HI	96761
Judith	Epstein	Lahaina	HI	96761
Lori	Fernandez	Lahaina	HI	96761
Sophie	Foulkes-Taylor	Lahaina	НІ	96761
Stuart	Kahan	Lahaina	HI	96761
Vicki	McCarty	Lahaina	HI	96761
Jane	Saeger	Lahaina	HI	96761
Jim	Albertini	Kurtistown	HI	96760
Diana	Miller	Kurtistown	HI	96760
Kristie	Nakasato	Kurtistown	HI	96760
s	sayles	kurtistown	HI	96760
Deanna	Summers	Haiku	НІ	96760
Lori	Buchanan	Kualapuu	HI	96757

Tommy	Cook	Koloa	HI	96756
anita	cook	koloa	HI	96756
Jeri	Di Pietro	Koloa	HI	96756
Friends of	GMO Free Kaua`i	Koloa	HI	96756
Haunani	Kaiminaauao	Koloa	НІ	96756
Tony	Kilbert	Koloa	HI	96756
Ken	Posney	Koloa	HI	96756
Lynne	Torres	Koloa	HI	96756
william	cote	kapaau	HI	96755
Pamela	Day	Kapaau	HI	96755
leia	lawrence	kapaau	HI	96755
Dana	Moss	Kapaau	HI	96755
JIM	PEDERSEN	KAPAAU	HI	96755
Beryl	Blaich	Kilauea	HI	96754
Aimee	Brown	Kilauea	HI	96754
Blake	Drolson	Kilauea	HI	96754
Val	Hertzon	Kilauea	HI	96754
Mary Hunter	Leach	Kilauea	HI	96754
Jorgen	Lien	Kilauea	HI	96754
sue	lindequist	kilauea	HI	96754
Maria	Maitino	Kilauea	HI	96754
Lila	Mortell	Kilauea	HI	96754
Caitlin	Ross Odom	Kilauea	HI	96754
Kelly	Sato	Kilauea	HI	96754
Monika	Seiz	Kilauea	HI	96754
Michal	Stover	Kilauea	HI	96754
Bridget	Tampus	Kilauea	HI	96754
robin	Torquati	Kilauea	HI	96754
steven	valiere	Kilauea , Kaua`	Ш	96754
Wandalea	Walker	Kilauea	HI	96754
Lee	Altenberg	Kihei	HI	96753
Andrea	Baer	Kihei	НІ	96753
Marguerite	Beavers	Kihei	НІ	96753
MARGO	Cruse	kihei	HI	96753
Susan	Douglas	KIHEI	HI	96753
zach	franks	kihei	HI	96753
Cynthia Unmani	Groves, Groves, Healt	Kihei	HI	96753
naima	hills	kihei	HI	96753
Judy	Jarvie	Kihei	HI	96753
Bettina	Jones	Kihei	HI	96753
Skye	Loe	Kihe'i	HI	96753
Mayumi	Marks	Kihei	HI	96753
Alison	Miller	Kihei	НІ	96753
lisa	modika	kihei	HI	96753
pamela	Palencia	Kihei	HI	96753
Frances	Pitzer	Kihei	HI	96753
kelly	prince	kihei	HI	96753
Elaine	Starrett	Kihei	HI	96753
Claire	Stucklen	Kihei	НІ	96753
Susan	Walsh	Kihei	НІ	96753
Donna	Werner	Kihei	HI	96753

•.	• .	1 .1 .	X TT	0(772)
anita	wintner	kihei	HI	96753
mark	young	kihei	HI	96753
Barbara	Childers	Kekaha	HI	96752
CC	Peyton	Kekaha	HI	96752
Susan L.	Gierman	Kealakekua	HI	96750
Nancy	Redfeather	kealakekua	HI	96750
Bobbie	Alicen	Kea'au	HI	96749
Diamond	Keahi	Keaau	HI	96749
Guadalupe	Ojeda	Keaau	HI	96749
Tutabelle	Ojeda	Keaau	HI	96749
Keith	Okimoto	Keaau	HI	96749
Ellen	Okuma	KeaÃ-au	HI	96749
Anthony	Olayon	Kea'au	HI	96749
Elin	Sand	Kea'au	HI	96749
John	Schinnerer	Kea'au	HI	96749
esther	szegedv	Kea'au	HI	96749
wainani	texeira	keaau	Н	96749
Ingrid	Tillman	KeaÃ-au	 HI	96749
Makanamaikalani	Tomono	Kea'au	н	96749
Valerie	Tweiten	Keggu	ні Ні	96749
Vicki	Vierro	Keaau	 	96749
V ICKI	Wheeler	Keaau	<u>HI</u>	90749
Cetherine	w neeler	Keaau		90/49
Catherine		Kauanakakai	HI	90/48
Malia	Akutagawa	Kaunakakai	HI	96/48
Ella	Alcon	Kaunakakai	HI	96748
Kevin	Brown	Kaunakakai	HI	96748
Kawika	Estrella	Kaunakakai	HI	96748
phil	kay	Kaunakakai	HI	96748
Napua	Leong	kaunakakai	HI	96748
Nancy	McPherson	Kaunakakai	HI	96748
Bridget	Mowat	Kaunakakai	HI	96748
Sharon	Naehu	Kaunakakai	HI	96748
Shirlee	Newman	Kaunakakai	HI	96748
Pohakamalamalam	Palmer	Kaunakakai	HI	96748
Penny	Rawlins-Martin	Kaunakakai	Ш	96748
walter	ritte	kaunakakai	HI	96748
Jamie	Ronzello	kaunakakai	HI	96748
Gandharva Mahina	Ross	Kaunakakai	HI	96748
Ann	Van Eps	Kaunakakai	HI	96748
Fave	Wallace	Kaunakakai	НІ	96748
Harmonee	Williams	Kaunakakai	НІ	96748
Matt	Yamashita	Kaunakakai	HI	96748
Tiffany	Anderson	Kanaa	HI	96746
christine	handsma	kanaa	н Н	96746
Karena	Biher	Kapau Kapa'a	н	96746
Kaeo	Bradford	Kapaa	н	96746
Carrie	Brennon	Kanaa		067/6
Louro	Fanoillat	Kapaa		06740
Laula	Espainai	kapaa	111	06740
	r arber	Караа		90/40
iviargery	rreeman	КараА-а		90/40
Lester	Gale	Kapa'a		96/46

Rosemarie	Grassa	Kapa'a	HI	96746
Sandra	Herndon	Kapaa	НІ	96746
Fern	Holland	Kapa'a, Kauai	HI	96746
Jennifer	Ire	Kapa'a	НІ	96746
lisa	jobson	kapaa	HI	96746
Teresa	Johnston	kapaa	HI	96746
Joan	Levy	Kapaa	НІ	96746
tracy	lyman	kapaa	НІ	96746
David Makana	MARTIN	Kapaa	HI	96746
Paul	Massey	Kapaa	HI	96746
Kaitlyn	McKee	Kapaa	HI	96746
Beverly	Montel	Kapa'a	HI	96746
Jessica	Murray	Kapaa	HI	96746
ashley	osler	Kappa -	HI	96746
Puanani	Rogers	Kapaa	HI	96746
Annlia	Russell	kapaa	HI	96746
Megan	Saari	Kapaa	HI	96746
Marissa Leimakan	Sperry	Kapaa	HI	96746
Ken	Taylor	Kapaa	HI	96746
james	trujilloq	Kapaa	HI	96746
Karen	Alvarado	Kailua Kona	HI	96745
Marjorie	Erway	Kailua-Kona	ĤI	96745
Adele	Henkel	Kailua Kona	HI	96745
Lydia	Hooser	Kailua-Kona	HI	96745
Lei	Kihoi	Kailua-Kona	HI	96745
kathryn	reynolds	Kailua Kona	HI	96745
Melinda	Ahn	Kaneohe	НІ	96744
Kuuleianuhea	Awo-Chun	Kaneohe	HI	96744
Bishops	Bishop	Kaneohe	HI	96744
trond	borg	kaneohe	HI	96744
celeste	borges	kaneohe	HI	96744
Mara L. B.	Chang	Käne`ohe	HI	96744
Donald	Cooke	Kaneohe	HI	96744
JOHN	FOX	KANEOHE	HI	96744
Liam Gray	Gray	Kaneohe	HI	96744
mike	irvine	Kaneohe	HI	96744
Kamuela	Kala'i	Kaneohe	HI	96744
Annette	KaohelauliÃ-i	KaneÃ-ohe	HI	96744
Dave	Kisor	Kaneohe	HI	96744
royce	kovacich	kaneohe	Ш	96744
Anitra	Pickett	Kaneohe	HI	96744
LorrieAnn	Santos	Kane`ohe	HI	96744
LorrieAnn	Santos	Kaneohe	HI	96744
Pilipo	Souza	Kaneohe	HI	96744
Laulani	Teale	Kane'ohe	HI	96744
Marti	Townsend	Kaneohe	HI	96744
Patrice	Walker	Kaneohe	HI	96744
Amy	Wiecking	Kane'ohe	HI	96744
Waimea	Williams	Kaneohe	HI	96744
Thomas	Young	Kaneohe	н	96744
Rosemary	Alles	Kameula	HI	96743

Michelle	Baydo	Kamuela	HI	96743
Katie	Benioni	Kamulea	HI	96743
Janice	Brencick	Kamuela	HI	96743
Kauanoelehua	Chang	Kamuela	HI	96743
Michele	Chavez-Pardini	Kamuela	HI	96743
lisa	Damon	Kamuela	HI	96743
Haroldeen	Gillette	Kamuela	Ш	96743
Lani Loring	Howell	Kamuela	HI	96743
maxine	kahaulelio	kamuela	НІ	96743
Keala	Kahuanui	Kamuela	HI	96743
Ekela	Kahuanui	Kamuela	HI	96743
Haunani	Kalama	Kamuela	HI	96743
Erin	Lindsev	Kamuela	HI	96743
Sara	McCav	Kamuela	HI	96743
Mahina	Patterson	Kamuela	н	96743
Douglas	Phillins	Kamuela	Н	96743
Jeff	Sacher	Kamuela	Н	96743
Marge	White	Kamuela	ні Н	96743
Billie	Dawson	Kalaheo	<u>н</u>	96741
Mary Lu	Kelley	Kalaheo	<u>- 111</u> - ЦП	96741
Morry	Stone	Kalaheo		06741
Iviary	Bandan	Kalanco Kailua Kana		90741
Drugollo	Denuel	Kailua-Kona		90740
Brucena	Derait	Kailua-Kona		96740
I halla	Davis	Kallua-Kona	HI	96740
Gwen	Ilaban	Kailua-Kona	HI	96740
Lorraine	Kohn	Kailua Kona	HI	96740
Kamuela	Meneula Naine	Kailua Kona	HI	96740
Janice	palma-glennie	Kailua-Kona	HI	96740
Ho'ala	Rivera	Kailua Kona	HI	96740
claire	Sanders	Kailua Kona	HI	96740
Deborah	Sevy	Kailua-Kona	HI	96740
Aggelige	Spanos	Kailua-Kona	HI	96740
Rowena	Vaca	Kailua Kona	HI	96740
Cynthia	Cynthia Taylor	Keauhou	HI	96739
Miranda	Watson	Keauhou	HI	96739
Lehua	Kaulukukui	Waikoloa	HI	96738
Nancy	Scarola	Waikoloa	Ш	96738
Bob	Zeller	Ocean View	HI	96737
Jacques	Bargiel	Kailua	HI	96734
Kristin	Bathen	Kailua	HI	96734
Alanna	Bender	Kailua	HI	96734
Bernice K	Bishop-Kanoa	Kailua	HI	96734
Amelia	Borofsky	Kailua	HI	96734
Maile	Bryan	Kailua	HI	96734
Roland	Chang	Kailua	HI	96734
Mele	Coelho	Kailua	HI	96734
Sephera	Dandurand	Kailua	HI	96734
Neil	Frazer, PhD	Kailua	н	96734
christina	Gauen	kailua	HI	96734
Carlton Kalani	Handley JR.	kailua	HI	96734
Andrea	jepson	Kailua	НІ	96734

٠

-Page 11-
	L			
Jenefer	Miles	kailua	HI	96734
Kauakea	Olds	Kailua, O'ahu	HI	96734
Kory	Payne	Kailua	HI	96734
Kim	Payton	Kailua	HI	96734
Jenn	Perell	Kailua	HI	96734
becky	robison	kailua	HI	96734
Ernette Haaheo	Scanlan	Kailua	HI	96734
Moanike'ala	Sitch	Kailua	HI	96734
Thomas	Tizard	Kailua	HI	96734
Nicholas	Wilhoite	Kailua	HI	96734
Leslie	Yee Hoy	Kailua	HI	96734
CarolLee	Averill	Kahului	HI	96732
Marie Elena	Juario	Kahului	HI	96732
Ramon	Mitra	Kahului	HI	96732
Ramon	Mitra	Kahului	HI	96732
Cynthia Kahaulani	Sablas	Kahului	HI	96732
Jessica	DelaCruz	Kahuku	HI	96731
Olini	Maile	Kahuku	HI	96731
Margaret	Primacio	Kahuku	HI	96731
Novita	Saravia	Kahuku	HI	96731
lauren	achitoff	Kaaawa	HI	96730
Lia	Cain	honokaa	HI	96727
Sunee	Campbell	honokaa	HI	96727
Ben	Discoe	Honokaa	Hİ	96727
william	hardisty	honokaa	HI	96727
Susan	James	Honokaa	HI	96727
7.	Johnson	Honokaa	Н	96727
Nalei	Kahakalau	Honokaa	HI	96727
Valerie Y O	Kim	Honokaa	HI	96727
Miranda	Lewitsky	Honokaa	HI	96727
Ioshua	Mangauil	Honoka'a	н	96727
hillary	marsh	honokaa	HI	96727
Iovce	Marvel-Benoist	Honoka'a	Н	96727
Maureen	McGraw	Honokaa	н	96727
cynthia	McKean	Honokaa	н	96727
Thomas	Pahio	Honokaa	<u>н</u>	96727
Verdean	Pahio	Honokaa	н	96727
Devnna	Pahio	Honokaa	н	96727
susan	sanders	Paauhau	н	96727
leilea	satori	honoka'a	н	96727
Raymond	Tokareff	Honokaa	<u>- 11</u> 	96727
Ru	Carley	Honaunau	н	96726
Ku Kathleen	Carr	Honaunau	н н	96726
David	Carl	Honounou		96726
Shavne	Fillmore	Honaunau		06726
Francesca	Fillmore	Honounou		90720
douglas	fox	honaunau		96726
wowne	levin	honolulu		06726
Wayne Eato	Morchall	Uonounou		<u> </u>
Esta Dono VV	Shim Dolomo			90/20
Dalla IN	Sillill-raiama	Halualaa		90/20
w aller	Anuraue	Inolualoa	П	90/23

Jeri	Baumgardner	Holualoa	HI	96725
Craig	Elevitch	Holualoa	HI	96725
Shannon Taylor	Monkowski	Holualoa	HI	96725
Jane	Rubey	Holualoa	HI	96725
Shannon	Rudolph	Holualoa	HI	96725
Terry	Tokuda	Holualoa	HI	96725
Kathy	Conery	Princeville	HI	96722
Ron	Dixon	Princeville	HI	96722
heidi and gary	garcia	princeville	HI	96722
Kathleen	Luiten	Princeville	HI	96722
jeani	martin	princeville	HI	96722
Brad	Parsons	Princeville	HI	96722
Ina	Roessler	princeville	HI	96722
Andrea	Slevin	Princeville	HI	96722
Dharma	Wease	Princeville	HI	96722
noel	al-khatib	hilo	HI	96721
David	Bishaw	Hilo	HI	96721
Aurelia	Castagnetti	Hilo	HI	96721
Amy	Cutler	Hilo	HI	96721
Corv (Martha)	Harden	Hilo	HI	96721
Kanoe	Кари	Hilo	HI	96721
Mark	Lewis	Hilo	HI	96721
Odette	Rickert	Hilo	HI	96721
Ianet	Taylor	Hilo	н	96721
Marcia	Timboy	Hilo	Н	96721
T	Zender	Hilo	Н	96721
Julie	Alessio	Hilo	Н	96720
Sharol	Awai	Hilo	н	96720
oli malamalama	aweau/ turalde	hilo	HI	96720
Kamuela	Bannister	Hilo	HI	96720
Nalani	Barrett	Hilo	н	96720
Mariah	Bath	Hilo		96720
Hooulu	Bueltmann	Hilo	HI	96720
nohealani	casperson	hilo	н	96720
I isa	Clark	Hilo	н	96720
Victoria	Fiore	Hilo	н	96720
Tesse	Fujimoto	Hilo	<u>н</u>	96720
Ronald	Fujivoshi	Hilo	<u>मा</u>	96720
Mahealani	Iones	Hilo	н	96720
Keoki	Kahumoku	Hilo	ਸ਼ ਸ	96720
Keoni	Kalaimamanu			96720
Lindo M	Kalcinananu	Hilo	<u>- ш</u>	96720
Dillua M. Rebecco Kapolei		Hilo		96720
A keemekemee	Kim		- III 	96720
Taffroy	Lagrimas	Hilo		96720
Dropo	Mandae	- Hilo		90720
Talla	Mongihevet			90720
John	Maywall			90720
Pondol	MoEndroo			90720
I ahala	Dorkon Dailar			90720
Lancia	Dili	Lilo		90720
James	1111	ITHO	+ m	90/20

DU	In	T T'1	1 111	0(700
Ellen	Posner	Hilo	HI	96720
Deirdre Moana	Tavares	Hilo		96720
Leenelle	Tomooka	Hilo		96720
Mililani B.	Trask	Hilo	HI	96720
Mililani	Trask	Hilo	HI	96720
leihulu	watson	hilo	HI	96720
Wendy	Wells	Hilo	HI	96720
Ron	Whitmore	Hilo	HI	96720
Avis	Yoshioka	Hilo	HI	96720
josiane	beauvais	hawi	HI	96719
Richard	Benton	Hawi	HI	96719
Michal	Carrillo	Hawi	HI	96719
Jeannie	Marcom	Hawi	HI	96719
Natalie	Young	Hawi	HI	96719
Ahulani	Wright	Hau'ula	HI	96717
Linda Louise	Harmon	Hanapepe	HI	96716
Linda	Pascatore	Hanapepe	HI	96716
Tim	Andres	hanalei	HI	96714
Lynda	Davis	Hanalei	HI	96714
Stephanie	Fitzgerald	Hanalei	HI	96714
Laurvn	Galindo	hanalei	НІ	96714
Miguel	Godinez	Hanalei	НІ	96714
Claudia	Herfurt	Hanalei	НІ	96714
Jason	Ito	Hanalei	HI	96714
Scott	Jarvis	Hanalei	Н	96714
rachel	kattlove	hanalei	н	96714
chris	kohavashi	hanalei	<u>н</u>	96714
Diane	Krieger	Hanalei	н	96714
Holly	L azo	Hanalei	<u>н</u>	96714
Sulvia	Partridge	Hanalei	ні Ні	96714
Sylvia	natner	hanalei	<u>- 111</u>	06714
Somenthe	Shatzline	Honolei		96714
Samanua		Ilanalai		90714
Kathy	Childa	Tanalei		90714
Kathryn	Childs	Hana		90/13
	Elbert	Hana	HI II	96713
Ineodore	Firestone	Hana	HI	96/13
Mililani	Hanchett Krause	Hana		96713
Seth	Raabe	Hana	HI	96713
aerie	WATERS	hana	HI	96713
Karen	Atwood	Haleiwa	HI	96712
Sara	Bartlett-Valente	Haleiwa	HI	96712
Tinker	Blomfield	Haleiwa	HI	96712
Mary	Brewer	Haleiwa	HI	96712
Patrick	Doyle	Haleiwa	HI	96712
Zenna	Galagaran	Haleiwa	HI	96712
Gary	Gunder	Haleiwa	HI	96712
Josie	Hoh	Haleiwa	HI	96712
Mary	Lacques	Haleiwa	HI	96712
Michael	Saiz	Haleiwa	HI	96712
Jeff	Haun	Hakalau	HI	96710
andrew	binstock	haiku	HI	96708

(1			
Ralph	Boomer	Haiku, Maui	HI	96708
Dawn	Boucher	Haiku	HI	96708
Margaret	Campbell	Haiku	HI	96708
Shay	Chan Hodges	Haiku	HI	96708
Sharon	Fairclo	Haiku	HI	96708
Bernard	Fickert	Haiku	HI	96708
Laura	Giubardo	Haiku	HI	96708
Mary C.	Goodman	Haiku	HI	96708
Joan	Heartfield	Haiku	HI	96708
Steven	Hookano	haiku	НІ	96708
jennifer	jensen	HAiku	HI	96708
Lisa	Kasprzycki	Haiku	HI	96708
Barb	Kay	Haiku	HI	96708
Barb	Kay	Haiku	HI	96708
Naia	Kelly	Haiku	HI	96708
Angela	Kepler	Haiku	HI	96708
Mahina	Lenta	haiku	HI	96708
madeleine	migenes	Haiku	HI	96708
Sodengi	Mills	Haiku	ਸ	96708
Robert	Mitnick	Haiku Maui	HI	96708
Kyle	Nakanelua	Haiku	н	96708
Anne	Pierce	Haiku	Н	96708
Heaven	Pua	Keanae	н	96708
Valentine	Redo	Keanae	п	96708
Pohin	Reut	Holey	 	90708
Kobili Halan anna	Sahanuvaltan	Heilen		90708
Sugarna				90708
Suzanne	Calabrada			90708
Jan		Kapolei		96707
EVELYN	SUUZA		HI	96707
Кеокі	Baclayon	Ewa Beach		96706
pauani	nookano	ewa beach		96706
Carolyn	Norman	Ewa Beach	HI	96706
Scharlene	Freeman	Eleele	HI	96705
Linnea	Heu	Ele'ele	HI	96705
Deborah	Anapol	Captain Cook	Щ	96704
Diannad	DeRosa	Captain Cook	HI	96704
Christine	Makahilahila	Captain Cook	HI	96704
Owen	Moore	Captain Cook	HI	96704
Anna	Subiono	Captain Cook	HI	96704
gia	baiocchi	Anahola	HI	96703
Andrea	brower	Anahola	HI	96703
Andrea	Brower	Anahola	HI	96703
Nola	Conn	Anahola	HI	96703
Selina	Heaton	Anahola	HI	96703
Lorilani	Keohokalole-Torio	Anahola	HI	96703
Lindyl	Lanham	Anahola	HI	96703
Rebecca	Miller	Anahola	HI	96703
Abilynn	Rita	Anahola	HI	96703
Leonard W	Rita jr	Anahola	HI	96703
Tracey	Schavone	Anahola	HI	96703
Vicki	Spina	Anahola	HI	96703

Erica	Taniguchi	Anahola	HI	96703
Debi	Wilson	Anahola	HI	96703
Pualani	Baptista	Aiea	HI	96701
Alexis	Horio	Aiea	HI	96701
Myranda	Silva	Aiea	HI	96701
Marti	Townsend	Aiea	HI	96701
Jenna	Byrne	Willits	CA	95490
PHYLLIS	FLOWERS	WILLITS	CA	95490
MABEL	LONG	WILLITS	CA	95490
FREDDIE	LONG	WILLITS	CA	95490
beverlea	weaver	willits	CA	95490
Kerry	Beck	Sebastopol	CA	95472
Gina	Covina	Laytonville	CA	95454
Sharon	Paltin	Laytonville	CA	95454
Dixie	van der Kamp	Santa Rosa	CA	95404
Peter	Sanderson	Santa Rosa	CA	95401
Leslie	Santos	Merced	CA	95340
Pat	Nakamura	Stockton	CA	95219
Neil	Ordinario	San Jose	CA	95148
Alexander	Jelinek	San Jose	CA	95136
Karen	Affonso	San Jose	CA	95130
Earlene	Cuelho Alexiou	Soquel	CA	95073
Alexa	Watson	Santa Cruz	CA	95062
Patricia	Mateicek	Santa Cruz	CA	95060
Dennis	Lvnch	Felton	CA	95018
Toni A.	Wolfson.RN	Felton	CA	95018
Joseph	Nu'uanu, S.M.	Cupertino	CA	95014
Shirley	Asuncion	san anselmo	CA	94960
Laura	Lee	Larkspur	CA	94939
Tara	Cornelisse	San Rafael	CA	94903
Lisa	Chipkin	San Rafael	CA	94901
Kim	Hahn	San Rafael	CA	94901
Eileen	Harrington	Berkeley	CA	94709
Amy	Marsh	Albany	CA	94706
Marcia	Kerwit	Berkelev	CA	94702
Kathryn	Letkev	Oakland	CA	94610
Ariel	Curtis	oakland	CA	94609
norbert	farrell	oakland	CA	94602
sandra	morev	oakland	CA	94602
Aura	Lane	Oakland	CA	94601
Stepahine	Eike	Orinda	CA	94563
Dana	Dennison	Martinez	CA	94553
Donna	Weilenman	Martinez	CA	94553
Leilani	Birely	Lafavette	CA	94549
William	Golove	El Cerrito	CA	94530
Claire	Cummings	Angwin	CA	94508
Virginia	Velez	Alameda	CA	94501
iennifer	beck	foster city	CA	94404
Mava	Moisevey	Palo Alto	CA	94306
Diane	Marshall	Hilo	HI	94270
Jesamyn	Angelica	San Francisco		94121
Jobanyn	misenva	Jun I fancisco		77121

Isao	Kaji	honolulu	HI	94121
Katey	Chikasuye	San Francisco	CA	94118
Timothy	Johnston	San Francisco	CA	94117
keali'i	forsberg	San francisco	CA	94115
Kathleen U'ilani	Campana	San Carlos	CA	94070
Stacy	Sullivan	Redwood City	CA	94061
Karen	Rudolph	Los Altos	CA	94022
Linda	Evans	Monterey	CA	93940
Kaela	Gallagher	San Luis Obisp	CA	93401
Mary	Elliott	Santa Barbara	CA	93130
Jaime and Cheryl	Snyder	Santa Barbara	CA	93130
Mawaekamaka	Copeland	Port Hueneme	CA	93041
Elisha	Belmont	Westminster	CA	92683
Cvnthia	Simms	Laguna Niguel	CA	92677
Katie	Winchell	Huntington Bea	CA	92649
Jacqueline	Judd	Huntington Bea		92646
robin	Rabens	Idvllwild	CA	92549
Lea	Lea Padilla	Redlands	CA	92373
Cindy	Williams	Yucca Valley		92284
dinda	Evans	San Diego		92177
Iohn	Monte	San Diego		92154
Theodora	Furtado	San Diego		92134
Wondi	Faria	San Diego		92113
Marla	C'NI:	Visto		92101
Delly Vechielele	Cherryford	V ISta		92081
		El Cajon		92021
Amiee		El Cajon		92021
	Hall	San Diego		91911
Chelice	Gilman	Bonita	CA	91910
Bryan	Matsumoto	Temple City	CA	91780
Anita	Arconado	San Dimas, CA	CA	91773
jackie	Raines	Ontario	CA	91762
Carolyn	Lunel	Etiwanda	CA	91739
roy	lunel	etiwanda	CA	91739
Kalai	Kamauoha	burbank	CA	91505
Angela	Spirrison	reseda	CA	91335
Cindy	Crawford	Long Beach	CA	90815
Thomas	Iannessa	Long Beach	CA	90808
Shien-lu	Stokesbary	Long Beach	CA	90804
Dona	van Bloemen	Santa Monica	CA	90403
Araceli	Perez	Culver City	CA	90230
Corey Ann	Lewin	West Hollywoo	CA	90069
Ken	Ng	LA	CA	90066
Lauri	Peacock	Hobbs	NM	88240
glory	dassi	El Prado	NM	87529
Nancy	London	Santa Fe	NM	87505
Richard	Welker	Santa Fe	NM	87505
Rose	Zellers	Albuquerque	NM	87112
Carrie	Rex	Albuquerque	NM	87105
Tricia	Egger	Sedona	AZ	86336
Kekama	Galioto	Tucson	AZ	85716
Kathy	Corvea	Kapaa	н	85286
	1	r	*	

Kealoha	Robinson	Tempe	AZ	85285
Desdra	Dawning	Sun Lakes	AZ	85248
Brooke	Lind	Queen Creek	AZ	85242
Carolyn	Moore	Mesa	AZ	85215
Joseph	Joseph Bateman	Salt Lake City	UT	84103
Juanita Nalani	Benioni	Orem	UT	84097
caroline	Metzler	glenwood sprin	CO	81602
Kathy-Lyn	Allen	Pueblo	СО	81003
Pumehana	paisner	Boulder	СО	80301
tom	jackson	denver	CO	80219
Andrew	Hina	Denver	СО	80218
Jessica	Sittloh	Littleton	СО	80127
Shannon	Dodge	Centennial	СО	80122
Joshua	Garfein	Centennial	CO	80122
Diana	Lopez	Wheat Ridge	CO	80033
Terrie C	Williams	Vidor	TX	77662
Lisa	Marshall	Houston	TX	77070
cate	dapkus	dallas	TX	76021
mikel	Athon	cedar hill	TX	75104
donna	van renselaar	west fork	AR	72774
Iames	Lopez	Topeka	KS	66614
Chervl	Rosenfeld	Columbia	MO	65202
Sara	Schmidt	Arnold	MO	63010
Ravi	Grover	Chicago	 	60680
Diana	Fischer	Darian		60561
Amy	Voung	Bigfork	 	50011
Iennifer	Iohnson	Minneanolis	MN	55409
Paul	Moss	White Bear Lak	MN	55110
I dui Loffroy	Smith	Fairfield		52556
Pamono	Formandaz	Fairfield		19922
Sugio	Peerson	DoWitt		48820
Joan	VenSelove	De witt Highland		40020
	Valiselous			48330
Nonex	V ale	Center		48220
Indity		Canton		4010/
	Manter Aufwalterinit	DIDIANADOLI		4/304
DIANA(ANIMAL	Martz - Animalspirit	INDIANAPOLI		46217
Forrest	Hurst	Westfield		46074
berton	Harran	Hilliard	OH	43026
Lisa	Cash	42105	ot	42105
Kara Ann	Kanao			40160
Susan	Kasmussen	Quitman	MS	39355
Sarah	Kane	Knoxville		3/918
Donna	Cussac	Cleveland	IN	37311
Cathy	Kobinson	Mobile	AL	36695
Elaine	Nichols	Oldsmar	FL	34677
April	Esterly	Sarasota	FL	34234
greg	moser	naples	FL	34114
Mary	Detrick	St. Petersburg	FL	33710
kathleen keahi	Keahi Winn	Bruges	ot	33520
Anna	Reycraft	North Miami	FL	33181
Kristine	Kadlac	Miami	FL	33176

Kike	Kike Carrazana	Miami	FI.	33133
donald	stevens	winter park	FI.	32792
Kameananiokalani	Walker	Cassadaga	FI.	32706
I ibbie	Hambleton	Destin	FI	32541
Sam	Chung-Hoon	Lacksonville Be	FI	32250
Damala	Ponnett	Chataworth		30705
Palliela Dohort	Weener		GA	30703
Robert Debeneh Lemm	w agner	Lawrenceville	GA	30044
Deboran Lynn	Dickerson	Easley		29642
	van Patton	Asneville	NC	28804
Leimamo	Lind	Alexandria		22314
briana	Wagner	hagerstown	MD	21740
Maria	Gallo	Lothian	MD	20711
Royelen Lee	Boykie	Washington	DC	20016
Kathleen	Kathleen Dockett	Washington	DC	20008
Andrew	Benson	Lewes	DE	19958
Bill	Marconi	Berwyn	HI	19312
tina	horowitz	philadelphia	PA	19143
Talia	Young	Philadelphia	PA	19107
daniel	greider	lancaster	PA	17601
Raenette	Rogers	Delta	PA	17314
Stephen	scribner	Elmira	NY	14904
Matthew	Russell	Deposit	NY	13754
Summer	Bradley	Utica	NY	13501
Jack	Lynch	Greenfield Cent	NY	12833
Margot Malia	Lynch	Greenfield Cent	NY	12833
BRYNA	BRYNA	BRYNA	HI	12345
Bobbi	Aqua	Sag Harbor	NY	11963
Tibor	Weinreb	Brooklyn	NY	11236
Jonathan	Schwartz	Brooklyn	NY	11231
Brvan	Milne	Brooklyn	NY	11211
Ian	Larv	Brookvln	NY	11206
Debbie	Burack	New York	NY	10022
George	Held	New York	ot	10014
Kris	Kato	New York	NY	10003
Kris	Kato	New York	NY	10003
Viviane	Lerner	Hilo	<u> </u>	9672
Verheke	Dominique	Izegem Flander	ot	8870
Denise	I vtle	Fords		8863
Frederike	Ebal	Flomington		8805
David	Storch	Brick		8722
donnalena	sing	bonolulu		6816
	sing Tuul Cadana	Tormaville		6706
mark	fronklin	nehoc		0/80
mark Ã		panoa	<u></u>	0//8
Ase	Borg	Arendal	ot	4848
raith M.	WIIICOX	westport	ME	4578
Maxine	Veale	Katoomba	ot	2780
Danielle	Ledward	Jamaica Plain	MA	2130
Marc	Albert	Sudbury	MA	1776
Raechel	Doughtyq	North Adams	MA	1247
clare	loprinzi	holualoa	HI	967
Sheila	Ward	San Juan	PR	927

Glen	Venezio	San Juan	PR	911
Carmen	L	Madrid	ot	0
Jonathan	Agoot	San Diego	CA	
William	Albritton	Honolulu	HI	
Linda	Anderson	Novato	CA	
	Ashworth	Lihue	HI	
Laurissa	Asuega	Wai'anae	HI	
Trevor	Atkins	Honolulu	HI	
Meghan	Au	Waimanalo	HI	
Kuuleianuhea	Awo-Chun	Waimanalo	HI	
BRIAN	BAPTISTA	Los Angeles	CA	
Sabrina	Baxter-Thrower	Oakland	CA	
Janise	Biehler-Moore	Hilo	HI	
George	Birchard	Sanford	NC	
Michelle	Blake	Honolulu	HI	
Anna	Bowman	Salem	OR	
Joseph	Bruchac	Greenfield Cent	NY	
keisha	byrd	UPPER MARL	MD	
Matthew	Chase	Reno	NV	
Natasha	Clarin	Ewa Beach	HI	
Scott	Coryea	Chandler	AZ	
Nelson	Crabbe	hilo	HI	
Scott	Crawford	Hana	HI	
bobby	crowe	new orleans	LA	
Jonathan	Daniels	Los Angeles	CA	· · · · · · · · · · · · · · · · · · ·
Dave	Davenport	Tijeras	NM	
Carmela	De Marco	Koloa	HI	
Leilani	Digmon	Honolulu	HI	
katherine	doyle	bradenton	FL	
Kuuwainani	Eaton	Hilo	HI	
К.	Elderts	Kahau'u	HI	
Bruce	Erickson	Pearl City	HI	
charlot	feuerhelm	Hilo	HI	
Andrea	Galas	Brooklyn	NY	
leon	gittens	inglewood	CA	
Mary	Goosby	Chicago	IL	
Ed	Greevy	Honolulu	HI	
arlen	guieb	Waianae	HI	
diana	gutierrez	garland	TX	
Peggy	Haissig	Lagunitas	CA	
Jeremy	Halinen	Tacoma	WA	
Ken	Hamabata	Los Angeles	CA	
Hina	HanapiHirata	kaunakakai	HI	
Lance	Hashida	Los Angeles	CA	
Umi-A-Liloa	Hekekia	Hilo	HI	
Mychale	Inagaki	Honolulu	HI	
Andrew	Ingraham Dwver	Columbus	OH	
Dean	Jefferys	Mullumbimbv	ot	
robin	johnston	haleiwa	HI	
Alex	Johnston	U.K	ot	
CURSTYN	KALAHIKI-SALIS	WAILUKU	HI	

Sarah	Kama	Honolulu	HI	
Kanani	Kasuya	Pearl City	HI	
cowboy	kiyota	pearl city	HI	
Deborah	Laub	Los Angeles	CA	
Meridith	Leo-Rowett	Dix Hills	NY	
Roberto	Lopez	Brooklyn	NY	
Chad	Lorenzo	Aiea	HI	
· · · ·	Ly	Houston	TX	
MARY ANN	LYNCH	Greenfield Cent	NY	
Uilani	Macabio	Kamuela	HI	
Ian	Maioho	Kualapuu 9675	HI	
	Makaiau	Mililani	HI	
Yvonne	Manipon	Eugene	OR	
Yves	Martin	Los Angeles	CA	
i	martinez	Modesto	CA	
Karen	McCullough	Albuquerque	NM	
Maureen	McFadden	Santa Barbara	CA	
Michele	McKay	Honolulu	 	
Karla	Meek	Honolulu	HI	
iosenh	Meno	makawao	H	
Alison	Miller	Kihei		
Christopher	Minnes	Honolulu	 	
Mark	Miyashiro	Kaneohe	 	
Genevieve	Morgan	Pahoa	III 	
Dellevieve	naito	rosemend		
Torri	Nancahi	Uilo		
Donna	Nagaimento	Dukalani Maui	 	
Donna	nascimento	Pukalalii, Maul		
saran		kapa a		
	owen			1
aukai	pa'alua De alta e a	SANTA CLAK		
Terrilyn	Pacheco	Wailuku	HI	
Brandon	Page	Seattle	WA	
Ana	Page	Rochester		
Angle	Palma	Hilo	HI	
Mikaele	Pitolo	Waianae		
Darrell	Pojas	Mililani	HI	
Pamela	Polland	Kula	HI	
Sheryl	Porter	Kaneohe	Hl	
Celeste	Pule	Hilo	HI	
Keala	Pule, Sr.	Hilo	HI	-
Flo	Pulu	San Diego	CA	
Anuenue	Punua	Kaneohe	HI	<u> </u>
Aaron	Rosenstiel	Barbourville	KY	
Richard 'rich'	Roth	Tubac	AZ	
Chris	Rowett	Blue Point	NY	
Kolu	Ryan	los Angeles	CA	
Aubriann	Santiago	San Dimas	CA	
reena	SHAH	fort collins	CO	
Kaipoaloha	Simeona	Honolulu	HI	
Loke	Simon	Honolulu	HI	
	Sinclair	Honolulu	HI	

Julian	Sosa	Utica	NY	
Jeremy	Spear	Honolulu	HI	
Ellin	Stiteler	Gillette	WY	
Rayna	Strike	Wailuku	HI	
Ka'akapua	Swain	Hilo	HI	
Alison	Swigart	Honolulu	HI	
Т.	Tajiri	Redondo Beach	CA	
kyle	thompson	austin	TX	
Onaona	Trask	Kurtistown	HI	
	Triggs	Templeton	CA	
chelsey	valmoja	waianae	HI	
Anne	Van Ornum	Raymond	WA	
Coleen Heanu	Weller	Hilo	HI	
michael	wells	san antonio	TX	
Edward	Wendt	Haiku	HI	
Elliott	Wong	Honolulu	HI	
A.	Zecha	Spokane	WA	
Atlanta	Cook	St. Agnes Corn	ot	TR5 0RD
David	Meanwell	Sutton	ot	SM3 9AO
Angela	Cielo	Hilo	HI	Pahoa, HI
Andre	O'sullivan Anakela	Cork, Ireland,	ot	00004
Lindsav	McDougall	Toronto	ON	M4X1R3
Robert	Wolff	Kea'au	HI	Kea'au
Miwa	Tamanaha	Honolulu	HI	Honolulu
Doreen	Redford	Aiea	HI	Aiea
Loralee	Jacobson	Arlington	WA	98223-7938
Ranhael	Kaliko	Honolulu	Н	96828-1031
Sandrea	Chun	Honolulu	<u> </u>	96822-1902
Sarah	White	Honolulu	HI	96819 #3
Karen	Victor	Honolulu	HI	96817-1829
Blossom	Hoffman	Hopolulu	<u>н</u>	96816-1224
Warren	Kundis	Mililani	HI	96789-2138
David M K	Inciong II	Pearl City		96782-2581
Nai'a	Newlight	Pa`ia	ні Ні	96779-8110
Colleen	Fahert	Pahoa	н	96778-7525
Ioan	Lgoen	Naalehu	HI	96772-0029
Tony	Rich	Kamuela	H	96743-8536
Frances	Voshimitsu	Kailua	н	96734-3910
Patricia	Blair	Kailua	ा॥ मा	96734-2765
Kione	Baymond	Kahului	Ш	96732-1617
Leona	Toler	Hilo	 មា	96720-4850
Ernest	Messersmith	Haiku	 Ш	96708-4899
Maraia	McDuffie	Fl Sobronto		90708-4899
Marcia	McDuffie	Martinoz	CA	94603-3414
Saran	Virachhaum			94333-2400
Montino	Rischoaum	Los Aligeles	CA	90033-4110
Edward M	Dohson	Dluff		84512 0000
Mal S	Stark	Sandwich	<u>п</u>	60548 0219
Cupthia	Nadalin	Felton		17272 0710
Cynuna isobol	storah	Dittahurah	ГА р	1/322-0/10
Eriko	Comrie	Innoice		11/20 1017
LIIKa .	Comme	Jamaica	IN I	11432-101/

Mark	schuster	Kailua-Kona	HI	967454798
Patricia	Blair	Kailua	HI	967344410
Margaret	Rydant	Northborough	MA	15321229
jesse	soto	phoneix	AZ	850021
Leimomi	Martin	Juneau	AK	99901
Judith	Lyon	Anchorage	AK	99511
Lisa	Maahs	Anchorage	AK	99509
Janet	Smith	Vancouver	WA	98666
Den Mark	Wichar	Vancouver	WA	98660
Katy	Fogg	Olympia	WA	98501
Pam	Haight	Olympia	WA	98501
Forest	Shomer	Port Townsend	WA	98368
David Adam	Edelstein	Seattle	WA	98125
Victoria	Hanohano-Hong	Seattle	WA	98122
Beverly	Mendheim	Seattle	WA	98122
Zachary	Klaja	Seattle	WA	98102
Charles	Lawson	Kent	WA	98042
Wanda	Brown	Bend	OR	97702
Justin	Michelson	Kula	н	97690
Joy	bannon	ashland	OR	97520
Demelza	Costa	Sweet Home	OR	97386
Lila	Liebmann	Portland	OR	97219
Leonore	Libeu	Portland	OR	97217
Sarah	Sullivan	Portland	OR	97206
Nancy	O'Harrow	Lake Oswego	OR	97068
Ralph	davis	Scappoose	OR	97056
Charles	Alger	Sandy	OR	97055
sandra	phillips	OREGON CITY	OR	97045
Santos	J	Mangilao	GU	96913

A-KNOWN TARD FARMERS RESOLUTION ON GENETICALLY ENGINEERED TARO

We, the undersigned, TARO FARMERS are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

.[Name (Print)	Signature	Address	Phone Number	Email	Comments! or Need more info?
*	Charles F. Reppun	Charlf. Rep	47-410Lulanist. Hancole 96844	2396123		
¥	Paul Reppun	In 2 Ro	47-415 MahakenRd.	2394223		
×	AQUID REPPUN	Maria & Berns	1310 Pahoa	9604788		
/ K	Jayson Mole Clus	Junpin Mach Chew	PO Box 627 House	715-6816 Hi 96727	· · · · · · · · · · · · · · · · · · ·	
*	albert MarkChew	alberte Moch Chu	P.O. BOC 627 Hen	alcon, be 96727	Ph# 175-08	25-
K	Kalae Mock Chew	Kalve Mack Chew	P.O. Box 627 Huntan	HI96727 776	0815	
ĸ	Kuulei Badua	Darthy Badua	P.O. Bar 5109 Kuku	haele 96727	babadua	Cad.con
×	pennie Toko -	Debro Toto	P. U. BOX500 KUK	775-9863 11hade 9672-7		
9	Donald Cooke	Oligha	47146A Pulama Rd	239 5873	mana vlop	hot mail
<u> </u>	Dand MCEntre	Carlton 1	3157 Haralei H:96714	(35-03)8		
PD	F processed with CutePDF eva	aluation edition www.CutePE	DF.com / /	-		ſØ

We, the undersigned, TARO FARMERS are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

	Name (Print)	Address or Town/Island	Phone Number	Email	Signature	Would you like more info?
*	Elaine Watari	P.O. 204132 Hanales, Hi 96714	826-6748		glain Water	
k	R Varence Kaco	40. BX 1289 Homales Hu 96711	S#33-956F		Margare Bane	. <u></u>
*	Stacy Spoot-Bell	» PD BDX (189) Hanabei, H1. 96714.	689-1815	sigratchong	BASK	· · ·
*	Manter Majure	Kaena	876 6757		Manuel Maline	· ·
*	Demetri Rivera	P.O. Box 114, Kilanea	826.7836	2	Junturfin	
-*	GARY Koga	P.O.B.Y. 323	828.1489		Dard	
*	Adam Asquith	4654 Hannaly R.A.	823-6598		the mo	
" *	Irwin Haraguchi	96714 P.O. Box 1606 Hanalei	828-0087		Juin Harsquet	
4	Celem Ungrun	P.U. Box 88 Honnie	826-6459		GLEWN HORMGUCH	F1
*	Susan Mahuiki	P.D. Box Bb1 Hundler	826-1629	• .	Sane Mi-	
1		•	•			

١٧

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

Name (Print)	Signature	Address	Phone Number	Email	Comments?
Robert BROWN	Robert Brann	1747A Hule ST.	589-2727		
Kane Turalde	Have me	PC Box 1022 Wannen Hi 96 196	6515984	Raneswahin GA-OL·Con	&
UNCHE SEELEY	YCKIE SEELEN	MATERINA, HI. 96712	343-4414	blluuceee® hotmail.com	
tarimi Hermosula	Jami Humance	_ P.O. Box 202 Harala HF 96714	346-7870		
Kenni Hookano	for	4344 Anahala Rd	348-1478	Hoomanao	
Rawewehr Pundy	Kanch Puf	P.O., Box 780361 P.Kalani 96782	157-2556	Machiela O Hotmail. Com	
Newla Husin		44139 Kahinan: Lik Konester #196744	22-(224)	Thusser (3) barw!. Edu	
Luce Kin	Aut	PO Box 300305 Kaän, HI 96-	237 Pb 73	of and to	
Kapes Princer	hackbornon	9 0. bix 6258 Hanna 67 91717	953 0257		
Thomas Lyoungsr.	June Ry 38	46-193 Lilipune Rd Kansols, AI 96144	301-9721	kalogizer- yahor.com	

100

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

Name (Print)	Signature	Address	Phone Number	Email	Comments?
LEWN,	can have	7.0. BOL 957 14-20-5, 967.4	6390230	Kontracky	
S'cott PamErry	1 col Pming	DX 345 KILAUFA 9675	4 639-8630		
Roland D. SAGUM III	Rolundt Sagmat	P.O. BOX 95896765	(202) 586-67.20	PO33 C Kikada . ann	•
MIGHAEL KALEIKINI	Muhuittath	PO BOX 30 PALEOA, 41 96778	808.965.6233		
Marki Townsend	Marthia Joniscuid.	P.U. Box 270112 Honolulu 96827	808-524-8220	martie Kaheq.org	
MATRIE KAED	Mathe Kaeo.	38 Kantuwehi Pl. Kula 96290	298-3293	Mathefacopona	AWESOME) I. Com
OPEIN KUPALI	al-Ei	694 N. KUNKINI ST: HON. HAWAN 96817	585.0755	okupan a kotmai	
Charles Kanchailua	Var farding	891157 Pikarolenask Waranae 96792	375-7580	Pulaa 1950@ yahoo.com	
Mile Belho.	mile Celho	1246 monai.s Kailua H. 96734	285-2450	Cimeica notmail.com	
Juenita Kawamuto	Attintara	1747A Huli St. Hon., Hi. 96617	308-4-29-3-3-313	Juanite Ce Farmfrediharia	i con
	V	•			

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

ſ	Name (Print)	Signature ,	Address //	Phone Number	Email	Comments?
	ZHOR BASKO	Juverto	6240 Helen Kapaa	4-822- 4229	dr bwall	
3	Greensen C	- Canal	B=×957	6390230		- 4
A:	France	feee	Box 19	6393698		-
	JULIZHA DOMA	grudare -	PAX 19 HAHALEI	634-7037		
	NED WIFITZOCI	Zid marthe	DUBOX 689 KILANE# 1+1 96754	651-1446		
	Charlotte Kaai	Chubitte Kaai	5714. Kawahanka Kapaa Ht 96746	822-4168		
	Nu Hylton	Whyllon	1644 Kanepoonuird.	882-1590		
	MARY Ke Kuewa	Many Ke hura	P.O. Box 1787 -	(808)965-1688 232		
	En inice & changer	Rohemer	PaBox1192	8082452038		
	MARIE DAR	Main Dan	5116 KAWAIHAU RD KARAA, HI 96746	822-4168	·	

0

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

<u>s</u>.

ſ	Name (Print)	Signature	Address	Phone Number	Email	Occupation/Comments Need more info?
*	Leanny Campos	Reader from	P-0, Box 1096 Wainner H196394	305-0075	Kerainala_ X Oyahas.Con	KINY X
	DourickBanasiha	Danis Barih	P.o. Box 1096 Wainea Hi	335- 0075	() ()	
	Kerith Edwards	1678	6501 F abiparliki Kapar HI 90740	246-0233	Revitle 6 isclicolorg	Feacher B. I. Schut
	thather Hefin	Frathat es	7060 Kapuna PO	.651-1671	<u> </u>	
~	Sill Richardon		1659 Wanaas - Kapaaki	651.0717	Jr. Dr. P.	enservation ART com
	Richard DeMarco	FL Adeo	PO Box 1797 Kapaa H1 96746	822-0804		
	HODE De MARCO,	Jone Differce	Eutroph IF	872-4423		
	Suranne Kashiwach	In Kalik	POR 862 Calanco 94741	3328406		SW
	GARY BLAECH	Jary 2 Chink	POB 1434 Kilanea, HI 9	82 814 38 6754		
*	NICOL NONAXA	in we	POBY 227 Hordene	335-5136	Ronaka Gle ad. com	KIGA #
		7	97			ν

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

[Name (Print)	Signature	Address	Phone Number	Email	Occupation/Comments Need more info?
	Marleen Fu.	marloen	Box 581 Handei	526-0162	hanalel gill	<u>.</u>
×	MAHHew Field	upercont	1300229 Kilmun	65/1084		TANOR ETANOLEV
★	MAKOND MARTIN	making milling	Bax 11+2 handle	826-6948	· · ·	ll .
	Kehaulani Keku	Jan 2	PUB 1261 Kapro	346-7574	Kanaihentazi Center @ Kair	vie org
	MAR	JAMES W.J. PARSONSON	P.O. 304 1323 160102			J
<	Do Da Pusa	DESICEE DUCLA/AUPARSONSA	Bx 1333 Koloa	346-1052	End parsonson @hotmail.com	
,	Schar Freeman (Alle Drong	Box 261 Eleele H1 96705	6392670	scharloeure. Jahov.com	Artist
	BLARKE KODAYAShr	Manie, Katacpeti	Box 4.4 HANde	8267836		
	MICHAFL SJSSMAN	Muther ter	407 LEMAND	822-16-95		
	Sharrie Orr	λ	P-0-BOX 119	335-6968	÷	
			96796			1

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

Name (Print)	Signature	Address	Phone Number	Email	Occupation/Comments Need more info?
Corrile Brennan	C-3_	6050 A Kapati Rel. Kapaa, H] 96745	822-4123	carriejbrennan Ghotmail.com	naturo pathic Physician
Ginger Saiki	Shiper Steiler	33> Kihapai St. Kapan, 1196746	873-7346	geaileit hawaid rv. com	·
NICK SOOD		46691Rs BKNALES	828 1700	nickgosca Successulteras	
Daniel Mr Cart	DED	2735 c anao Rol Kalon 96756	6340348	danieldving	Notily
Thaddens Krol	Waddens Rich	P.O. Box 306 Friday Harbor WA	360 3786938		Selfeinp,
VoAnne Kaona	The Ka	P.O. Box 98251 1289 Hanaki HI 96714	6 20 83 652 - 1139	'jKaons@hairai	
Elitabeth AKo	Algebeth also	8.0, 00x 1584 1 Copaz, Hi 96746	822-5606		
ArleciaBooth	ARLECIA BOOTH	6 412 Karbele St Kapan Hi 96740	8:22-1702		SELF_CHP.
Kaee	Kacconalarín i	Poborlozy Anahola	6345038	gassytuty	KUMU
Linda Shimoda	13CB MODA	2092B Mayanalea Ulum H 1910761	245-9818	(sa shruada	artist
ferger			** ************************************	Works.C	om 1

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

Name (Print)	Address or Town/Island	Phone Number	Email	Signature	Would you like more info?
David b. Haya ea	P. Box 23 Annilda	82205850		Dayd & Hunsen	
CHARLES BREREIR	PBOX 441 ANAHALA	824 8945	· · · · · · · · · · · · · · · · · · ·	Charles & Pereira	
Danny Apana	P.O. Box 104 Kapoer	· · · · ·	· · · · · · · · · · · · · · · · · · ·	Dannay apana	=
Cotty Han You	g Bry 232 Havel	28266267		9	
Man Pfalfal	Dry 232 Havale	8226265	-		·
Tchard Jam Zou		8269279			
Dudly Jun Zyn		8567678			
Steain Han you	5 11 11 11	8264717			
Wegen Stan 3m		8266097			
Ourshen Han	former 1, (1)	8267285			
	7	z •			لـــــــ ۲

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

	Name (Print)	Signature	Address	Phone Number	Email	Comments! or Need more info?
Ŕ	Kari Shozuya	Kai Shogu O	1540 Waionuenue Ave Hilo, H1 96720	808-256-0816	shozuya⊙ hawaii.edu	-
★	Ruan Like	Non high	489 P.O Box 1189, Hanalei . HI 96714	8 08 - <i>484</i> - 0848	Mike Dhawii edu	
×	Penny Levin	Der 5	224 AINAHOU PLACE WAILUKU, HI 96793	808-285-3947	pennysthQ hawaii. rr.com	
	Leven Kim	Dwe ti	PO BOX 3 00 30 P Kaakin, HI 9.6730	2378673 H 2938577 0	gkim@ glcc.org	
	Mele Coetho	Mele Collho	333 Adloa St. # 318 Kaitua, Hi 96734	285-2450	cjmelos hotmas 1. Con	
×	SAMSON SATTOS	Sampasanto	46-257 Physical St Kamehr H196244	247-1063	Fish-N-pol 4-me.com	
	Torow Nakamum	For Marmin	5361 A Hanaalard	821-2521		
	Daniel Angulo	Val Argulo	5-5522 Kuhic Hwy Hanalei HE, 90714	926-1065	Fullinin Cigatoro o com	
	Kathleen Davis	Tathleen Davis	616 Partee Dr. Grand Junction Cosison	970 - 242 - 4575	-	
	James ORNellas	James Cenellas	P.O. Box 153 Kilmen Kontan Hi	828-1521		~
	0		96154		<u></u>	1

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

	Name (Print)	Signature	Address	Phone Number	Email	Occupation/Comments Need more info?
	Harmonie Hawtheme	A	PO Box 469 Kilanca	635-5735	Balcinair lamon.	chel
	Sonia Gordines	Junia Gordines	8721 Kawaibau Rd	872-3894	Shorft; 11Suinse Chotmail.com	£
* (Patherine & Ham Your	a actine Detaling	1015232 9674	6520485		
ĸ	Stary Sproat Bel	ANGEL	304:596 Hanali	639-1P15	S. Sproate	
	FNA ROESSLER	- B34 COSS(BC	10 BOX 223749	828 1760	US EKAWAi GENS. COM	·. · · ·
	NOR BED ROBBL	RAD-	n	L	21	
	Melksattosano (CAS	ausy Albert Pinaully	· ·	melthoson@anacon	
	Mason Edmonds T	LA.	4701 Waiakalun Ad.		hacedoggo 5 Qyahoo ad	
	ROBERT DAY	- total S	4136 NALAMI CN.	826-8714	bub day 10 howaith telenot	
	Koko DAM	Koko Day	4136NALANI AN	8269714	bob day 10 hawaiia tul. net	

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

[Name (Print)	Signature	Address	Phone Number	Email	Comments?
1*	PENNY LEVIN	Autos	224 ANAHOU PL LUAILUEU, HI 26793	(808) 285-3947 }		apprentice Paremer.
1/*	KEONA MARK	them that	P.O. BOX2 HALEIWAHI 96712	637-2778	Huikalo e aol.com	
L #	PAULO FUJISHIES	youts ty those	P.O. BN 1967 Warker 12 9679.	357-881N	Dophamakake	aulceele@
9	Donald D. Cooke	all Col	47146A PULAMA RD. KANECHETIH 96744		been hadagain	
4p	VALENVINE CHINE VK.	Julentine f. Chang	KI Kareoff Boy Di Krissen H. 96234	2. 2542590	makur@hawa	
{p	HAROLD W, ANO	Hande St. Onco	P.O. Box 713 ANAHOUS Hi, 96703	823-9776	SNEPHANIK ANO QAOL.	
						÷
						· · · · · · · · · · · · · · · · · · ·
						-
					,	· · · · · · · · · · · · · · · · · · ·
			1	L	<u> </u>	

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

ſ	Name (Print)	Signature	Address	Phone Number	Email	Occupation/Comments Need more info?
)	Phyllis Somers	Phyllin Somer	4334 John St.	· · · · · · · · · · · · · · · · · · ·	psomers Onthe	Pick Lic Outrees Spien
V)	Etechanie Ramsen	825	2290 Kahaloust	6516978	(amsey kavai Ousnill	<u> </u>
yk	Jacon & 1-00	1 that	HANALEI HI9674	630.1760	jken in to a phone	•••
4)	MONIKA SEIZ	Monika Seiz	P.O. BOX 876 KILALLEA 96754	635 7317	menitalaha Scoverline ne	LAT
5	Moani mahinai	Marin Mahiron	POB 292 avalla	~ 3400ZTT	SMO_Mani Oughon, Rom	in the second
		0		· · · ·	The second	1
					<u> </u>	
					·	
,						

G

We, the undersigned, TARO FARMERS are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

	Name (Print)	Address (millionalistication)	Phone Number	Email	Signature	Would) you like more info?
*	MILHAR FIRMERAND	P.O. Box Blie Hanalei, M	639-1590	Hitzgendelser	colit April	
*	Gamon Mahuiki Ja	P.O. Box 861 Homalei Hi	826.1629	,	Emond hut top	
*	Marvin Masad	a P.O. Box 284 Kilau	ea 828.1081		Wan Maria	
* (Geory Masadu .	i i i i i i i i i i i i i i i i i i i	in Ann		Junasada	
*	Jamo M goele	Popox 128112	enalie to	34	\triangleleft	
·() *	Chanles Sperice	P.O. BOX 98 HUMANALOI	826-6247		Chipole Sper	
× k	Diana Star	A. Q. Box 18 Home	Tig c		Viain Sugar	÷
	Reid K. Vushid	a P. O. Bux 73	652-9930		RIKA.	
オ	Chris Kobayashi	POBex 135 Hanaber	826-7836		allo	
K	Demetri Rivero	P.O. BOX114 Kilaves	826-7836		Hand free	

Π

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of . Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

	Name (Print)	Signature	Address	Phone Number	Email	Comments or Need more info?
	Warren Isip	Warry B, digs	46-260 Heeia St Kaneishe, HI 96744	(808)368-0495 (808)247-7249	Kini-warren Q 4. tmail.com	
×,	STEVEN HOOKANE	trat-	245 WAI fur ID.	248-7847	1 pauari @ Yanco. com	
A	Shawa Redo	Shawn Relo	P. U. Box 271 Hana May 261/3	298-8410		Stick to Your Roots
Å.	Ach 2nd	John Zink	AC Bay 254	2478974		
AC	Pauahi Bagac	X:ADD	245 Wailua Rd HaiKu Hi 9670	8 2487841	(panahit) yahos.con	
*	Alapak: Luke	aution	PO Box 11085 Honduly, AF 96	945-1413 200		
ķ	Tw Jothis	fight	52-234 Comediande	237-1231		
井炭	Bonattooke	and Cot	47146A PULAMAN =96744	2347770	beenhad	tmail
	DAVID STRACH C	How How	GIZI-CANVENUEST Honauw96822	948-1697	Straucher groenchop	tacks. em
	Jem M. Menamin	VIRGINIA MCMENTAMIN	22 Willneon	609-386 5-9640	VMCMENAMI Ocomcast. A	et.
	n ng sa		Burlington, NJ 08016			9

38

RESOLUTION ON GENETICALLY ENGINEERED TARO

We, the undersigned, <u>TARO FARMERS</u> are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

	Name (Print)	Address.	Phone Number	Email	Signature	Would you like more info?
Þ	Thelma Glena	POBOX (151	338-1810		Thehro alone	
×	WILSON A. AAKA	P. J. Box (151	338-1910		Witten aana.	
*	Kane Turalde	PO Box 1072	6515984		Xan De	
*	ties Pro	PO Box 342	338.878	2	France Com	
Ż	Heros aana	P.O. Box 734	335-365		Heborara ang	
*	Kings hi llebe	P.O RO 145	338 1458		Cineshi Uleda	
4	BORNARD MAKNAOLE	Box 212	337-1557		/	
¥	RATIVLINES CHAR	Box 927 Kerchuld	337-1428			
¥	LONGA DUSENBERRY	Box Yoy WAIMER	338-1075			
÷	JOHN K. AMARA	Box 734 WAIMER	385-3500		John Kr anna	

10

We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

We call for a statewide ban on any research or release of all varieties of genetically engineered taro and a ban on any patents involving taro.

·. . • .

	Name (Print)	Address and the filme	Phone Number	Email	Signature	Would you like more info?
Toppool	Bounard Makung	Wainea Bor 912	3371551		Bernard & Makeule	
*	RAULING ILCHAR	P.O.BOY 927 Kindsha	337 <i>-1428</i>		Jawhank Chr	
¥	Linda Dusenberry	P. Box 404 Warne	338-1075		Linda Dusenbury	
ヂ	JOHN K. AANA	Po. Bot 734 WAInt	335-3588	-	John K. Care	-
	Jimmy Tyler	POBX DIZWAIM	9 338 Upc		QZ	
	TYSONNakamita	P.D. DD+19 Exclined	338 8326		TN	
	Michael Karratti	96796 P.O. BOX 601 Warmea	337-9927	-	ON-AFE	
			-		$\downarrow \downarrow$.	
			· · ·		····	

We, the undersigned, <u>TARO FARMERS</u> are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

my

ĺ	Name (Print)	Signature	Address Zz 275352	Phone Number	Email	Comments?
x	HEX DIEL	aly alog	TEINCEVILLE, HI. 96122	(308) 826-7587		2 [*]
×	Muchard G. Fatage and	ant dige of	Pa. Bax 154 Hander	EPEROLA	2	
<u></u>	dosela 1. Histygenald	Acarto I. Hatzgunt	9.6 Best 154 Handi	806 826-6468		
	EVELYN A. LUM	Ehlop a. Am	90, Box 163 Julinea HI9675	(808)639-1.365 4	£	
	. 1	V		·····		· · ·
		· · · · · · · · · · · · · · · · · · ·	and the second	· · · · · · · · · · · · · · · · · · ·		
	i	· · · · · ·	· · · ·			
			<u> </u>			
						· · · · · · · · · · · · · · · · · · ·

RESOLUTION ON GENETICALLY ENGINEERED TARO We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

Name (Print)	Signature	Address	Phone Number	Email	Comments?
Justin	tastin	47-529	2739-4663		
Ledford-Castro	Feelford Casta	= Melekulard,			
Kama ettu Vopili	Langelin Saya/12	F. C. Box 10079 HID, HI, 96724	808-854-		
Kateo Kamakea · Onclo	Here fanaken Ohelo	41-272 HULIST 96795, 141	(808/239-7452		
Moani	mounic,	47-471	239-6559	manihemuli	
Heimuli	Hennih	APAU LOOP		@ yahou.com	
Shyla Pateic	Style Pahle	48-477 E kann. Hauf kancone Hi.	223-9046		
Calvin Hor	and the	PO BOY 5432	393 8762	Lalvinhoe	oo Mahalo
Charlene Hoe (Caltine .	P.O. Box 5432	235-91 55	Chhoe_hlc @ yanoo, com	~ ·
Dodd Clocke	Donald Dean Cooke	47-146A PULAMAN 96749	D	manqulu @ hotmail.com	
Fart Reppon	Pmc Pro-	47-415 Mahakean Kane dre 96744	1-2394223-		
ATER Bode	aller Bode	1942 C-ALPLOP Kiney, MACAR	283- 0738		
		11172			

RESOLUTION ON GENETICALLY ENGINEERED TARO We, the undersigned, are issuing the following resolution regarding genetically engineered taro, urging our local and state officials, the University of Hawaii, and other research institutions to take action to protect the integrity of taro.

We oppose the research and development of all varieties of genetically engineered taro.

Specifically,

{	Name (Print)	Signature	Address	Phone Number	Email	Comments?
木	GLADYS KANDA	Gladys Kanor	PO & 19/300 PATA, Bi 96779	248-8449		parmer
	Kuule: Badue	Dorochy Badus	POB 5109 Kukuihaele Hi	775-2894		
*	Kawika Winter	BUNGLIM	PO BOX 808 Haustei, HI 96714	826-1668		Na Katov e Malama ja Italoalli
×	fait Reppui	lath	47-415 Mahakea Rd Kaneshe 96749	2394223	- · ·	
济	Venti Filternietsu	Kechi falimt	F9-077 Johnson Ped tanedre Hi Ebisige	277-1923		
A	BAMBON Santos	Sanwassanto.	46-257 Phnowsla Kaneona HI 96XM	34-2-3261		
¥.,	Ann Tsuha	Un Ceulia	PO Box 38 WAULUM HI	242-4040		
*	John L. Reppun	Joh Z Reggen	4 47-229 Miomichp. Kancohc, H= 96744	239-4810		
	Lucy Kin	n Qwen Kin	PO BON 300305 Kadawa Ht 967:	2378673		<u> </u>
¥.	Charlie Reppan	About F. Rem-	4)-410 Lulan: 5t.	2396123		

From:mailinglist@capitol.hawaii.govSent:Thursday, March 19, 2009 12:18 AMTo:ENETestimonyCc:lesyeehoy@yahoo.comSubject:Testimony for HB1663 on 3/19/2009 3:45:00 PM

Testimony for ENE 3/19/2009 3:45:00 PM HB1663

Conference room: 225 Testifier position: support Testifier will be present: Yes Submitted by: Leslie A. YeeHoy Organization: Individual Address: Phone: E-mail: <u>lesyeehoy@yahoo.com</u> Submitted on: 3/19/2009

Comments:

Aloha

My name is Les Yee Hoy and I farm taro in Halawa Valley, Molokai. I'm testifying today as a taro farmer, farmer and concerned citizen.

Taro farmer testimony: I'm involved in this anti GE movement because these biotech companies want to genetically modify Kalo, the Hawaiian staple. They get a patent on it, they own it. If I want to continue farming Kalo, I have to pay them. I find this to be unacceptable.

Farmer testimony: The reasons (diseases, invasive species etc.) these biotech companies give to GM kalo, also applies to every other thing that we eat. (plant or animal). It's only a matter of time before these biotech companies try to GM all of the other crops grown in Hawaii and the world. Are you fellow farmers out there willing to pay or be put out of business? Farmers beware. Your turn to deal with these companies is on the horizon.

Concerned citizen testimony: I really believe that these biotech companies could some day control the world food supply. This is unacceptable. Also, the "Precautionary Principle" is being totally ignored.

I support passage of HB1663 and any other Bill out there that will keep them in check and accountable.

It's not just about taro anymore.

Mahalo for allowing me to testify. Les Yee Hoy Caren Diamond P. O. Box 536 Hanalei, Hi. 96714 March 17,2009

Testimony in Strong Support HB 1663 HD1,

ENE			
Room:		225	
Hearing	Date	3/19/200)9
		3:45:00	ΡM

Aloha Committee Members,

Please support HB 1663 HD1. Taro, is different than other crops, providing a living link to our history, and ancestors, as each huli planted reaches back in time to our ancestors and past farmers who sustained their families farming taro, caring for the land.

Taro is often synonymous with Hanalei. Our verdant green valley is home to many varieties of taro. As a resident of Kauai's North Shore, our community and culture is steeped in taro, it is both historically very significant, and crucial for our future.

Variety and diversity is the key to life, and in this time of high food insecurity, all taro should remain "natural", not modified by science. No other plant has the very same beginnings as in the past. Taro is an amazing plant, where the future and past are one. There is no reason for biotechnology to enter this sacred dance of nature. Truly, taro, in all its varieties, belong to the Hawaiian People. Why mess with a staple crop of the Hawaiian people? Each Taro plant has its history rooted with the ancestors, and it should remain that way.

Both the unknown risks and unintended consequences of genetic engineering of taro are unacceptable. The loss of taro's natural genetic integrity may compromise the plants ability to naturally adapt. Biodiversity is the key to plant life and Hawaii's agriculture , necessary for our sustainability into the future .

If researchers insert genes from corn, wheat, rice and other organisms, you don't know what is in it and it's not taro anymore. The genetic manipulation of taro is undesirable and unnecessary. There are many traditional means of building good soil health and improving crop quality that should be utilized, rather than the use of genetic manipulation of such an important staple to the people of Hawaii.

Please support this important bill. Its necessary to include all varieties of taro to achieve taro protection and purity.

Mahalo for your support, Caren Diamond

Subject: For HB 1663 HD1

Honorable Chair Senator Mike Gabbard,

Thank you for this opportunity to testify for HB 1663 HD1 as amended. I respectfully ask you and your committee members to pass HB 1663 HD1 to prohibit genetic engineering of **Hawaiian taro varieties only**. This bill is a good compromise that respects the cultural beliefs of native Hawaiians while allowing needed research using all available technologies to improve disease resistance of non-native taro varieties.

Deadly diseases in the South Pacific could wipe out taro production in Hawaii if they ever reach our islands. Scientists should be allowed to conduct pro-active research to improve disease resistance on non-Hawaiian taro varieties using all available technologies, before a crisis situation exists. Accidental introduction of the Alomae-Bobone Viral complex wiped out taro production in Makira Island in the Solomon Islands. All Hawaiian taro varieties are susceptible to the Alomae-Bobone Viral complex.

The Kauai Taro Grower's Association (largest commercial taro growing organization in Hawaii) has come out strongly in support of research to improve taro production using all available technologies for non-Hawaiian taro varieties. **Please support taro farmers by voting for HB 1663 HD 1.** Please do NOT amend it to prohibit genetic engineering research on all taro varieties.

Thank you for your time,

Cathy Mello
CLEGG, DAN [AG/2563] [dan.clegg@monsanto.com] Wednesday, March 18, 2009 6:11 AM ENETestimony HB 1663 HD 1 --Please pass out the bill "as is"

Sen. Mike Gabbard, Chair Sen. Kalani English, Vice Chair

Date: Thursday, March 19 Time: 3:45 p.m. Room: 225

This is the Senate hearing on HB 1663 HD 1

Please pass out the bill "as is"

Thanks.

Dan Clegg

808-283-4028 cell

This e-mail message may contain privileged and/or confidential information, and is intended to be received only by persons entitled to receive such information. If you have received this e-mail in error, please notify the sender immediately. Please delete it and all attachments from any servers, hard drives or any other media. Other use of this e-mail by you is strictly prohibited.

All e-mails and attachments sent and received are subject to monitoring, reading and archival by Monsanto, including its subsidiaries. The recipient of this e-mail is solely responsible for checking for the presence of "Viruses" or other "Malware". Monsanto, along with its subsidiaries, accepts no liability for any damage caused by any such code transmitted by or accompanying this e-mail or any attachment.

1

Sen. Mike Gabbard, Chair Sen. Kalani English, Vice Chair SENATE COMMITTEE ON ENERY & ENVIRONMENT

Support of HB 1663, relating to Genetically Modified Plant Organisms

Room: 225 Hearing Date: Thursday, March 19th Time: 3:45 PM

Position: Support

Dear Senator Gabbard,

My name is Laurie Goodwin, I live in Kekaha on the island of Kauai and I support the passage of HB 1663. I respect the spiritual and cultural significance of taro to native Hawaiians and I feel that this bill adequately addresses those concerns. It is possible that in the future Hawaii could face a disease or insect pest that would destroy the taro production we have left in the State. If we limit the tools we can use to fight future diseases and pests we may regret it later. This bill still allows research to be done on non-Hawaiian varieties and allows others worldwide to seek out the expertise of Hawaii's researchers.

I respectfully ask that you pass this bill out of your committee in its present form and honor the compromise offered by the House.

Thank you for this opportunity to testify.

Laurie Goodwin

P.O. Box 994 Kekaha, Hawaii 96752 u142520@gmail.com

DILL JR, GERALD M [AG/2111] [gerald.m.dill.jr@monsanto.com] Wednesday, March 18, 2009 9:32 AM ENETestimony Support of HB 1663 HD 1

Dear Senator Gabbard,

I am writing to voice support of HB 1663 HD 1 at the Committee on Energy and Environment hearings this Wednesday, March 18, 2009 at 3:45PM. This bill respects the cultural and historical significance of Taro to the Hawaiian people and allows critical research to continue. The tools and knowledge developed by such research will benefit Hawaiian growers as well as international Taro growers in searching for ways to keep the species a viable agricultural commodity. Our president, Mr. Obama, recently lifted the ban on stem cell research under the reasoning that research is critical to our success in curing genetic diseases. Likewise, allowing research on Taro to continue will develop the diagnostic tools and knowledge that will aid in selection of traits and varieties that are more resistant to pests and diseases and that can this crop can be grown more reliably for many years to come.

House bill HB 1663 HD 1 is an excellent compromise that will allow scientific advancement while respecting the spiritual and cultural significance of taro to native Hawaiians. Please honor the compromise offered by this bill and pass it "as is".

Sincerely,

Gerry Dill

Kaploei, HI

This e-mail message may contain privileged and/or confidential information, and is intended to be received only by persons entitled to receive such information. If you have received this e-mail in error, please notify the sender immediately. Please delete it and all attachments from any servers, hard drives or any other media. Other use of this e-mail by you is strictly prohibited.

All e-mails and attachments sent and received are subject to monitoring, reading and archival by Monsanto, including its subsidiaries. The recipient of this e-mail is solely responsible for checking for the presence of "Viruses" or other "Malware". Monsanto, along with its subsidiaries, accepts no liability for any damage caused by any such code transmitted by or accompanying this e-mail or any attachment.

SMITH, MARTHA A [AG/2058] [martha.a.smith@monsanto.com] Wednesday, March 18, 2009 2:51 PM ENETestimony HB 1663 HD 1

Senate Committee on Energy and Environment

Hearing for HB 1663

March 19th at 3:45pm

Honorable Senators Gabbard and English,

I am writing to ask that you pass out HB 1663 HD 1 as it's currently written.

HB 1663 HD 1 is a fair and equitable compromise that allows for genetic research in enclosed structures on non-Hawaiian taro while still respecting the spiritual and cultural significance of taro to native Hawaiians. The continuance of taro research is a must for the state of Hawaii to ensure that advancements in technology are made in case taro production is negatively impacted by disease or pests such as what happened in the Soloman Islands, Samoa, Puerto Rico and the Dominican Republic.

I applaud the members of the house for coming up with this compromise that builds a bridge between the cultural and scientific issues surrounding taro while not imposing outright bans that are sought after by activists who are blatantly and wrongly using the cultural significance of taro to advance their anti-gmo rhetoric.

Please pass out HB 1663 HD 1 as is.

Thank you for your time and for allowing me to submit testimony,

Martha Smith

Mililani, HI

This e-mail message may contain privileged and/or confidential information, and is intended to be received only by persons entitled to receive such information. If you have received this e-mail in error, please notify the sender immediately. Please delete it and all attachments from any servers, hard drives or any other media. Other use of this e-mail by you is strictly prohibited.

All e-mails and attachments sent and received are subject to monitoring, reading and archival by Monsanto, including its subsidiaries. The recipient of this e-mail is solely responsible for checking for the presence of "Viruses" or other "Malware". Monsanto, along with its subsidiaries, accepts no liability for any damage caused by any such code transmitted by or accompanying this e-mail or any attachment.

Michael Nagel [nagelmichael99@yahoo.com] Wednesday, March 18, 2009 10:23 PM ENETestimony HB 1663 HD1, Thursday March 19, 3:45 pm, room 225

Senators Gabbard and English,

I am writing in support of the passage of HB 1663 HD1 as is. This bill recognizes and respects the cultural and spiritual significance of Hawaiian taro to the Native Hawaiian community. HB 1663 HD 1 makes it clear that this is not a referendum on biotechnology. This bill allows researchers in Hawaii to pursue innovations that may enable biotechnology to be a valuable tool in addressing the agronomic challenges that have decimated taro production elsewhere.. The bill ensures that the extreme anti-GMO agenda of a vocal minority is not furthered by banning research on all taro varities.

Thank you for your time and consideration.

Aloha and Mahalo,

Michael Nagel Waipahu, Oahu As a horticulturist, I see both the beauty of plants and their importance as food to feed a rapidly growing world population. I am constantly amazed at the diversity within the plant world, and the unique ecosystems, especially on the islands in Hawaii. I understand the cultural importance and sacred traditions that taro has had in Hawaiian history. I respect the past, and believe that it should be remembered and honored. But, I also realize that the world is changing, and human populations are increasing at a staggering rate. This increase in world population requires agriculture to be more efficient and more productive on less land. Farmers must be able to harvest more from each acre of land than in the past, and the plants that they grow must be genetically superior to meet this demand, whether it is by natural selection, or by scientific methods.

I have worked in many sectors of the horticulture industry. Most relevant to this issue, I spent many years growing numerous food crops for sale directly to the general public. From talking to my customers, most people are concerned about where their food originates, and what has been done to it along the way before it gets to their plate. I share their concerns, and I am very supportive of using integrated pest management methods as a farmer's first step in pest control. I believe there are many cultural methods that farmers can take as a first step to minimize the use of pesticides, genetic modifications, and energy usage during production. But I also realize that there are pests that can be devastating to a crop if there are no controls available.

Plants have genetically changed throughout history and that is the beauty of natural diversity. But nature cannot keep up with such a rapid increase in human population on its own. We have altered nature so drastically in so many areas of the world that we must take extra measures to try keep up with growing demands of the world. That is why I believe that there should be GMO testing allowed for research purposes on taro. I believe there needs to be alternatives for future taro farmers if a devastating disease or insect outbreak occurs.

I support GMO testing on taro by universities and responsible industries, as needed, to develop disease and insect resistant varieties that will sustain a growing human population in the future. The technology that is available is amazing, and the people who work within the biotechnology industry have dedicated their lives to perfecting this science. The researchers and other supporting members in this field could have chosen a different career path to focus their energies on, but they have chosen to dedicate their time and energy on reducing pesticide usage, increasing crop yields, and helping feed the world population.

I know many people within the industry who have strong views on both ends of the genetically modified organism debate. I am still moderate in my views, but I tend to lean towards genetic modification after all other avenues have been explored. I know that genetic modification is not the complete answer by itself. But it is an integral part of the solution to feeding the growing world population. The technology is there to be used in a positive way, and we should not turn our backs on it, or burn those bridges that we may need in the future.

Sincerely,

Roxanne Nagel

From:mailinglist@capitol.hawaii.govSent:Thursday, March 19, 2009 3:38 AMTo:ENETestimonyCc:pololu@hotmail.comSubject:Testimony for HB1663 on 3/19/2009 3:45:00 PM

Testimony for ENE 3/19/2009 3:45:00 PM HB1663

Conference room: 225 Testifier position: support Testifier will be present: No Submitted by: Carolyn Classen Organization: Individual Address: 1222F Kaumana Drive Hilo, Hawaii Phone: 808-935-3204 E-mail: pololu@hotmail.com Submitted on: 3/19/2009

Comments:

Please allow genetic engineering to occur on non-Hawaiian taro varieties, in the safety of the lab at UH. It would be short sighted not to allow this scientific research before some of the taro viruses come to Hawaii.

Thomas T Shirai Jr P O Box 601 Waialua, HI 96791 Email: <u>Kawaihapai@hawaii.rr.com</u>

Senate Committee on Energy & Environment (ENE) Senator Mike Gabbard (Chair) /Senator J Kalani English (Vice Chair) Notice of Hearing Thursday, March 19, 2009 3:45 PM / State Capitol Conference Room 225

March 18, 2009, 2009

RE: Testimony Supporting HB 1663 HD1 (Relating to Taro Security)

Aloha Chair Gabbard, Vice Chair English & Committee Members,

I Support HB 1663 HD1. My *Grandpa* and his *Kupuna* were *Taro (Kalo) mahiai (farmers)*. They were *Cultural Informants* for Bishop Museum who provided information about *Waialua Moku:*

The Hawaiian Planter by E. S. Craighill Handy (1940) – Page 85 "Kaaimoku Kekulu (sic: Kaaemoku Kakulu), native of the district says that the name of spring and the terrace section noted above is Kaaiea."

Kawaihapai. "There is a sizable area of terraces in the lowlands (now surrounded by sugar cane), watered by Kawaihapai Stream. These terraces have evidently been lying fallow for some time, though several were being plowed for rice or taro in the summer of 1935. At the foot of the cliffs, watered by a stream the name of which was not learned, are several small terraces in which taro is grown by David Keaau (sic: David Keao)."

There is no need to improve taro (kalo) thru Genetically Modified Organism (GMO) because our ancestors had a more traditional, effective and respectful way regarding this matter for many generations. Growing GMO Taro, has a direct effect upon the entire Ahupua'a System when the water from the lo'l goes in the kahawai (stream), muliwai (head water) and kahakai (ocean) affecting our seafood subsistence including all marine life. This has quietly and potentially affected Mokule'ia.

Verse 2 of the chant entitled Kalena Kai (<u>http://huapala.org/KAL/Kalena Kai.html</u>) composed by King Liholiho in 1820 which describes the agricultural productivity of *Mokule'ia* was not meant to be interpreted as *Genetically Modified Crops*:

Kalena Kai by King Liholiho (1820) – Verse 2 'O ka ehu' ehu o ke kai – The sea spray Ka moena pawehe o Mokule'ia – Geometric designs of the plains of Mokule'ia

Thank you for the opportunity to provide testimony supporting HB 1663 HD1 applicable to *Hawaiian* varieties of *Taro (Kalo). Malama Haloa. Thomas T Shirai Jr Mokule'ia, Waialua* Testimony transmitted by email 18 March 2009 from:

Penny Levin 224 Ainahou Place Wailuku, Maui 96793

TO: Committee on Energy and Environment Rm 225, March 19th, 3:45am

RE: Testimony for HB1663 HD1 Relating to Taro Security

Aloha Honorable Committee members;

Regarding HB1663 HD1 *Relating to Taro Security*, I <u>support</u> the proposed legislation to protect taro in the State of Hawaii from genetic engineering <u>and request a return to the original language of the bill.</u>

Limiting HB1663 to only Hawaiian varieties does not protect the Hawaiian varieties from the potential of either hybridization or crop plant mixing through huli exchange; and therefore, neither protects Hawaiian taro varieties nor solves the problems of taro farmers in Hawaii.

In regards to importance of the original language of HB1663, I submit the following, as well as the attached matrix of issues related to the potential impacts that a release of genetically engineered taro might have on taro farmers in the state:

Taro farmers have been coming out of the lo'i and traveling to the legislature for three years to lay this threat to their crop, their food, their livelihood and their culture to rest. Last year, over 7,000 people testified in support of similar legislation including taro farmers, Hawaiians, three County Councils, consumers, organic farmers, scientists, health practitioners and specialists, and other supporters from across the state. In November 2008, the County of Hawai'i passed an ordinance banning the genetic engineering of taro.

As a taro farmer with a background in science and biodiversity conservation, I have weighed the benefits and risks of genetically engineered taro carefully and found it to be too great a risk to the integrity of the plant as a traditional food crop, the environment, taro biodiversity, fragile taro markets, and consumer health. It is also inappropriate in the context of the significance of taro in Hawaiian culture.

For every proposed benefit, there are serious questions that remain in the highest standards of the science regarding the safety of transgenic crops for human consumption and the natural environment, as well as its true productivity and economic impact. The National Academy of Science, the highest regarded scientific organization in the US, along with the International Assessment of Agricultural Science and Technology for Development [IAASTD] project, the UN/Food and Agriculture Organization (FAO) and World Health Organization (WHO) support this conclusion. In 2008, IAASTD produced a rigorous 2,500 page report after a four year study involving more than 400 scientists worldwide which concluded that organic agriculture, greater biodiversity within smaller contiguous fields, and improving access to markets would have a far greater impact than GE crops towards shifting world hunger and reducing crop disease. The study was supported by more than 30 governments and 30 global funders, including the US, England, other European nations, the World Bank, UN/FAO, WHO and the biotech industry, who recently pulled out of the project because they did not agree with the recommendations of the report.

The State of California, recognizing the uncontrollable persistence and irreversibility of gmo plants that hybridize non-gmo crops or escape into adjacent fields (whether they hybridize or not), passed into law this year landmark legislation (AB541) protecting farmers from crippling lawsuits by the biotech industry over cross-contamination. The companies do not compensate farmers for contaminating their fields even when organic certification is destroyed; rather, they consider cross-pollination or escape into other farmers' fields which can occur by wind, birds or insects to be theft of property rights. This says a great deal about who these companies really are and where their concerns lay.

But more important for taro in Hawai'i are three clear facts;

First, there are many problems that face taro that cannot be resolved by genetically modifying the plant. I have spent the last six years documenting the impacts and researching solutions with taro farmers to control the invasive apple snail, which is responsible for the highest percentage of crop and huli loss annually (Levin for DLNR-DAR, 2006; Hawaii Agricultural Statistics Service, multiple years). The apple snail is a major vector for other diseases that attack the taro; its razor sharp mouth creates a wound through which fungi and parasites can enter the corm, setting the stage for many forms of root rot. We know from experience and observation that solving the apple snail problem; improving soil organics, fallow durations and cultivar diversity; and restoring water to lo'i kalo will significantly reduce pests and disease occurrence and increase crop productivity. Removing the apple snails alone will eliminate an 18-25% crop loss and increase the available time a farmer has to care for his farm and his family by 50%. Proposed yield increases and disease resistance for GMO taro are hypothetical and untested; the apple snail will eat it anyway. There is no need or demand to grow GMO taro from local taro farmers or consumers. Indeed, even those few farmers who support continued gmo taro research, will not plant it in their fields. Better and safer options exist.

The genetically engineered taro has been developed using a variety called Bunlong, also known as Chinese, along with portions of wheat, rice and grapevine DNA. This variety has been used by taro farmers for more than 150 years in Hawaii – as a *leaf* crop and dryland table taro. It lacks the qualities of a good poi taro. It is used today mostly for the chip industry where tissue culture for clean planting material, good site selection, mulching and spacing practices significantly reduce disease. Poi millers use primarily Lehua and Moi, both Hawaiian varieties. A genetically engineered Bunlong taro does *nothing* to improve disease resistance or production for poi taro farmers. Millers will not buy it and consumers will not eat it (UH CTAHR survey 2008).

<u>Second</u>, taro will survive without genetic engineering long into the future if we attend to the sources of the problem. Taro is one of the oldest human-managed food crops in the world; its use dates back more than 50,000 years by some accounts, but it's regular cultivation can be documented to 7,000 -10,000 years ago in South and Southeast Asia. For an estimated 1,200 years, taro in Hawai'i has survived volcanic fallout, floods, droughts, pests and disease. The presence of the word, *kakane* (a leaf blight on plants) in the Hawaiian language illustrates that taro leaf blight has been around a very long time. Agricultural records show that several taro disease events occurred from the mid-1800s to the mid-1900s; but, this was *not* the primary reason for the decline of taro in Hawai'i as some would suggest. Only since the apple snail reached critical destructive mass (1990s), has the confluence of lack of cold water and poor soil quality created a corresponding persistence in disease occurrence in taro. A close look at data presented by HASS (2001) and UH CTAHR Cooperative Extension Services (Feb 2007) actually supports this understanding.

By the 1900s, many Hawaiians had lost access to both land and water. Many others died from disease, taking with them the knowledge of best growing practices and the taro varieties. In the 1930s, Chinese and Japanese farmers dominated commercial cultivation of taro, changing planting, mulching and fallow practices and cycles. Part of the decline in taro production can be attributed to changes in the market and in society. The demand for poi during the war declined significantly. A new era after WWII saw farming families urging their children to become doctors, lawyers and teachers rather than farmers; by the 1950s many people, including Hawaiians, preferred rice to poi. At the same time, farmers shifted away from organic mulching methods to chemical fertilizer applications initiating a long, slow decline in soil quality that persists today. The number of natural disasters during that same period severely impacted the productivity of taro-growing lands. Of the 50 tsunamis reported in Hawaii since the 1800s, seven inflicted major damage. The tsunamis of 1868, 1946, 1960 and 1975 and the hurricanes of 1940, 1957, 1959, 1982, 1986 and 1992 wiped out significant portions of low-lying taro lands, including those of Waipio and Pololu, Hawai'i; Halawa, Molokai; Keanae and Wailuanui, Maui; and Hanalei, Kauai (USGS and SOEST records). Major flooding events also took their toll, including in 1956, 1970, 1974-75, 1978-79, 1980-1983, 1987-88, 1991-92, 1999-2000, 2004 and the rains of Feb-March, 2006 that devastated Kauai growers fields (USGS; greater than 10,000ft³/sec). It takes an average two years to recover from such events; sometimes longer.

Archival records dating back to the early 1800s indicate it was attention to the soil and the water that kept the taro robust. Queen Emma herself grew taro whose corms averaged 22in. long and 22in. around and documented the careful management of the soil and plants by which she achieved this standard; something very few taro farmers still practice. She writes; *"the size of the roots depend upon the depth of loose soil, and the care bestowed on its cultivation. I have produced kalo which averaged twenty-two inches in length and the same in circumference when it was cultivated under my own eye, but far less in the same locality when the cultivation was somewhat neglected by my konohiki" (HEN Vol. Arch. Collection, pp 76-83; undated manuscript, Bishop Museum; Queen Emma collection 71, nd, pg8).*

<u>Third</u>, protecting the biodiversity of taro is critical to future survival, food and economic security. Hawai'i retains many of the ancient Hawaiian taro varieties, some of which are extremely rare, along with extensive ex-situ collections of taro from throughout the Pacific, and Asia. A ban on genetically engineered taro in Hawai'i provides a buffer of protection not just from cross-pollination but more importantly from simply the inability to visually distinguish between a gmo taro and a non-gmo taro in the field. The ban would protect not just the Hawaiian varieties, but all taro cultivars found in the state, an important resource for continuing to build leaf blight resistance using conventional hand-pollination techniques - or restoring traditional varieties back to their original islands throughout the region.

What we are asking for is a return to ethics in agriculture in Hawai'i - one where the researchers, institutions, agencies and industries who *say* they wish to help farmers are actually engaged in what farmers really need and ask for, rather than the pursuit of patents; where researchers also understand and take responsibility for the risks and burdens they place on us and our markets when they follow a path of their own making.

The State of Hawai'i made a commitment to taro by designating it as the State Plant and by establishing the Taro Security and Purity Task Force to address non-gmo issues for farmers in 2008. I urge the members of the Committee on Energy and Environment to further this commitment by passing in <u>full support HB1663 in its orginal language</u>.

Mahalo nui loa. Respectfully,

Penny Levin Taro Farmer and conservation planner, Maui

МУТН	FACT	Evidence
1. Taro decline is due to disease, especially since the 1940s.	Taro decline is directly linked to loss of water resources and acreage (from over 1,200 to 380ac in 70 years); tsunami, hurricane and flood damage; changes in soil management practices; a decline in the number of acres and farmers (from over 1200ac in 1946 to 380ac in 2008; from many hundreds of farmers in the early 1900s to 110 in 2008); a decline in the number of Hawaiians practicing taro cultivation or with access to watered land; and the presence and increase in apple snail populations since 1983/84 to the present. Disease events play a minor role and are often a secondary result of these other causes because of weakened plants from lack of good water and soil or snail damage.	Graphs (2); UH CTAHR, Bishop Museum records, apple snail damage on taro corms which create open wounds (vectors for disease); long term observation in the field by taro farmers.
2. Taro flowers rarely, if ever, flower and therefore cross- contamination is not a threat.	All taro cultivars in Hawaii flower at least once a year and often simultaneously. They produce viable seed. Taro farmers observe this in their fields regularly. The Bishop Musuem records concur. IRETA (UNDP/FAO) promotes traditional hand-pollination in its taro breeding programs in the Pacific.	Taro flowers presented to HAW (2/18/09); Bishop Museum records; IRETA (J. Wilson 3/89)
3. Genetic engineering is the best technique for solving disease problems for taro in Hawaii.	GE taro researchers failed to evaluate less controversial, longer lasting solutions to taro problems, including improving soil conditions, increasing cultivar diversity, fallow time, and water availability. In fact, they have not done a single comparison. The EPA is currently investigating charges that the seed crop industry has prevented researchers from fully investigating both GE crop impacts and comparisons with non-GE plants. A 2,500 page report by the UN supports these findings and challenges the industry on economics, productivity, chemical use, speed, nutrition, health, disease and drought resistance.	February 20, 2009 NY TIMES Crop Scientists Say Biotechnology Seed Companies Are Thwarting Research; National Acadmeny of Sciences, UN/FAO
4. Taro farmers must have the GE taro in Hawaii as a back up, "just in case".	The GE Bunlong (Chinese) taro created in Hawaii will not help existing commercial wetland poi taro growers. Bunlong is <i>not</i> a poi taro. Internationally recognized germplasm facilities dedicated to the preservation of biodiversity conduct research using conventional breeding methods or GE, have higher research standards and adhere to the Cartegena Protocol (the precautionary principle). UH, HARC and PBARC do not. Even if research was allowed, response and federal permit time lags would be too late (see below)	WHO, FAO, UN, IINBR, Leuven University, Belgium in cooperation with Biodiversity International; Fiji University with FAO
5. Taro farmers who want GE taro as a backup, will plant it and be able to sell it to millers or consumers.	No taro farmer has said they will plant it in their fields, even those who want the research to continue. No miller will buy it and consumers will not buy it. Consumers in Hawaii demand GE foods be labeled so that they can choose.	Taro farmer, poi miller testimony; consumer survey UH CTAHR 2008

MYTH	FACT	Evidence
6. Recombinant DNA technology is merely an extension of traditional breeding and is necessary to analyse and genetically map Hawaiian taro cultivar varieties.	Recombinant DNA is a new technology that is "a form of synthetic DNA combining DNA sequences that would not normally occur together" While genetic mapping uses high tech equipment and processes found in the biotech industry; the techniques, the science, the practices nor the equipment are exclusive to the industry and are available as part of the science of microbiology and microecology where the protocols are also more rigorous and researcher ethics more clear.	J. Berg, J. Tymockzo, L Stryer. <i>Biochemistry</i> . San Francisco, W.H. Freeman ISBN 0-7167- 8724-5
7. GMO DNA does not impact our foods or our health.	A recent study published by the National Academy of Sciences states that dietary DNA can find its way into the blood, opening up the possibility of GMO DNA transforming somatic cells. Bt toxin may also cause perforation of blood cells. [Gutierrez, D. 4/10/07]. Monsanto's GM corn MON863 approved for human consumption shows kidney, liver toxicity in animal studies as well as hormonal changes in rats in a study performed by researchers from the independent CIRGE (France). The science of the FDA, the agency responsible for protecting our health, has been serverly compromised by its own admittance. If ge research were safe, then universities wouldn't need to have strict IBC protocols to govern research in this field. Biotech research in Hawaii has been fined by EPA for careless and unpermitted field trials on several occassions in the last ten years.	NAS 2008, ICAR (P. M. Barghava; father of biotech in India); Com. for Independent Research and Genetic Engineering (France); FDA: Science and Mission at Risk, Nov 2007
8. Genetically engineered crops take less time to develop than conventional hybrids and produce more.	Conventional hybrids take few years to develop, as in the case of Samoan taro hybrids to counter leaf blight epidemics in the 1990s. They do not need permits from the FDA or EPA to move from the lab to the nursery, to field tests, to farms and tables. Exhaustive evidence and the industry's own admittance shows GE crop development lags far behind in speed. The physiology of plants is now reaching the limits of the productivity that could be achieved.	IAASTD; UK Dept for Environment, Food and Rural Affairs 2008; USDA; Lester Brown, Earth Policy Institute; S. Evans-Freke, Cibus chairman (BASF); Royal Society of Canada

MYTH	FACT	Evidence
9. GE "debris" does not spread to the surrounding environment	A 2007 study provides evidence that toxins from Bt corn travel long distances in streams and may harm stream insects that serve as food for fish. These results compound concerns about the ecological impacts of Bt corn raised by previous studies showing that corn-grown toxins harm beneficial insects living in the soil. This may have serious consequences for nearshore reefs in Hawaii. If crops are able to breed with wild relatives, the new genes will be spread to those wild plants. For example, sorghum can breed with the common weeds johnson grass and shattercane, and canola can breed with wild mustard plants. If the plant is Roundup- ready the weed will end up Roundup-ready.	NAS, NSF 2007 (J. Tank et al); Dr. P. Goldsbrough, Purdue University
10. GMO crops reduce chemcial use	Chemical use has declined on some crops but there is little or no change on others. Insect resistance to Bt toxin has already been demonstrated in the lab and observed in the field. Farmers must take other measures to slow down the development of resistance in insects, but it will eventually happen. Those who plant crops that are genetically engineered to resist the herbicide Roundup are now applying more of it to their fields. A study of over 8,000 university-based field trials suggested that farmers who plant Monsanto's engineered soy use 2.5 times more herbicide than non-GMO farmers who use integrated weed-control methods. Roundup Ready" (RR) seed and RoundUp, a chemical weed killer, is Monsanto's biggest money-maker and is sold together with the RR seed.	IAASTD; C. Benbrook, Pesticide Outlook (2001); Dr. P. Goldsbrough, Purdue University
11. GMO crops provide better economics for small farmers	IAASTD, FAO and WHO concluded it was unequal distribution of resources and environmental degradation, not crop productivity that are the most important factors in the current global food crisis, and concludes "small-scale farmers and ecological methods provide the way forward to avert the current food crisis and meet the needs of communities."	IAASTD; People, Land Management and Ecosystem Conservation program, UNEP (M. Pinedo-Vasquez 2009)

To:	State Senate
	State House of Representatives
Re:	Testimony in support of ban on GMO Kalo

From: John Keikiala Aana

Taro Farmer- 30 yrs.

Former owner- Makaweli Poi Mill, Inc. Former Vice President- Kauai Taro Growers Assoc. President- West Kauai Taro Farmers Co-op. Member- State Task Force on Taro Security and Purity Kanaka Maoli

Aloha,

I am a descendant of the Makuaole family, from Makaweli Valley, formerly known as Olokele Valley. Our family has a history of growing kalo in this area that can be traced back to prewestern contact. Unlike many Kanaka Maoli families, who were disposessed from their kuleana lands, we have managed to hold on to our land, and continue to this day, to plant kalo, and to care for the very same aina that our ancestors cared for. We, as Kanaka Maoli, are direct descendants of Haloa, and Kalo.

We, as the indigenous people of this land, have had our lands stolen illegally, have been made to be second class citizens in our own land, and now are being attacked at the very essence of our spirit. Would we think of going to Japan or China, or any other country, and tell those people that we want to Genetically Modify their ancestors? Would the people of those countries allow that? I don't think so. But that is exactly what they are trying to do to us. This is no longer just a taro farmer issue. This is a Kanaka Maoli issue.

The Kanaka Maoli were conservationists. They practiced sustainability. They understood that what we do today will directly affect the generations to come. That is why they practiced kapu sytem, to guarantee the sustainability of their resources. They took only what they needed to sustain themselves, and left the rest to restore and replenish that resource. By doing that, they guaranteed their own survival and existence into the future.

As a commercial taro farmer for the past 30+ years, and as a poi miller for 15 yrs., I understand the economics of taro and poi production. I have seen the results of leaf blight and pocket rot, and the devastation caused by apple snails. I have seen poor quality soil and taro, resulting in decreasing yields of both taro and poi. But at the same time, I have also seen beautiful, solid taro, with no pocket rot. I have seen promising results with some hybrid taro, with old Hawaiian varieties, and with wild varieties taken from the mountains of Kauai. I know from my own experience that we can grow strong, healthy taro without genetically modifying it. GMO taro is not the answer to our problems. There are other scientific methods to develop disease resistant varieties. We as farmers, need to rotate and fallow our patches, and take the time to replenish the soil organically. If the soil is healthy, the taro will grow healthy and high yields. But this is the problem. Large commercial farmers only grow one variety of taro and do not fallow their patches. They do not take the time to rest and replenish the land. They have kept on planting large areas just to force profits, but now they are getting more disease, snails and lower yields. There are those that think that a GMO taro is the answer to their problems, so that they can continue high intensive, mono-cropping practices, which are unsustainable into the future. Allowing GMO taro to be produced would be the beginning of the end of the taro industry. Plus, the apple snail can still eat 50% of a GMO taro. Get rid of the apple snail and production will increase by 50%. Think about it.

No one knows what the future will bring, but I hope that we can learn from the practices of our ancestors. We Hawaiians, farmers and non-farmers, know what is pono in our hearts. It is not a future based on GMOs. It is a future based on sustainability and conservation. We need to put a kapu on GMOs. We humbly ask you to support the ban on GMO research on kalo.

Mahalo for your Kokua,

John Keikiala Aana

To: State Senate

State House of Representatives

Re: Testimony in SUPPORT of ban on GMO Kalo (HB1663 & SB709-SD1)

From: West Kauai Taro Farmer's Co-op

President- John Keikiala Aana

Taro Farmer- 30yrs; Former owner- Makaweli Poi Mill, Inc; Former Vice President- Kauai Taro Grower's Assoc.; Member- State Task Force on Taro Security and Purity; Kanaka Maoli

Aloha,

The West Kauai Taro Farmer's Co-op represents taro farmers from the west side of Kauai, mostly from Waimea and Makaweli Valleys. Our taro production is included in the 70-80% of the state's taro supply that Kauai produces. We also are the farmer's that have lasted through the generations and generations, and continue to produce taro against great odds, because we are the living Hawaiian culture. We continue to plant taro because it is who we are, and it is a legacy that has been passed on to us by our kupuna.

Our members are mostly small commercial taro farmers. Our taro production mostly goes to supply the poi market on Kauai. While we are considered commercial farmers, one thing that we have in common is that we don't farm taro for just the money. My uncle and mentor, Barnie Char, used to say, "You cannot grow taro for just the money. It has to come from in you. You have to love to do it."

While we might represent a smaller proportion of the Kauai's taro production than the larger commercial farmers, we are no less important. There are many other small taro farmers throughout the state, who oppose any kind of GMO research, on any kind of taro. The West Kauai Taro Farmer's Co-op. supports the ban on GMO Kalo.

Please Kokua,

John Keikiala Aana

Testimony in Support of HB1663

Chris Kobayashi Fulltime Organic Taro Farmer Hanalei, Kauai

Aloha Representatives,

I am in strong support of HB1663, Ban on GMO taro in Hawaii.

My parents and grandparents farmed taro since the early 1940's. I grew up surrounded by taro fields. I attended the University of Hawaii and got a B.S. in Agriculture. I didn't know at the time that I would be the one to take over the farm after my dad retired.

If my dad was here today, he would say that we need to protect and take care of the taro.

He was the one who taught me how to select for the best *huli* (vegetative propagative piece) for the next planting. Sometime in the '60s and '70s, there was this "disease" called Guava Seed. Not even the CTAHR researchers knew the cause of it. There seemed to be no cure. My dad, in his wisdom, felt strongly that selection of huli played a huge part in eliminating that "disease". Today, it is rare to see Guava Seed in our plantings. Selection of huli means being observant of the plants and of their many good and desirable qualities in the field as they respond to the seasons and other environmental factors. This is what all the Kanaka Maoli Kahu o Haloa who came before all of us did. It is through their astute observations and abilities to select and breed that we have the different Hawaiian varieties today.

Through observation, it seems that the production and quality of taro started to decline rapidly in the late 1980's and early 1990's. To me, it was similar to the stock market crash. I think. But in our case, it was the Soil Fertility Crash. I spoke to an agronomist at UH but he didn't seem to agree with me. I believe we had different perspectives of what a healthy soil is.

If one looks at how commercial taro is being farmed today, one will see that the field barely has time to rest and fallow or grow a rotational crop in between, before taro is once again planted in the same field. If there is disease present, continuous planting will just increase the disease presence. We must break the disease cycle. Change the environment so that the beneficial microorganisms can multiply.

There are many many applications that we can try in growing taro. Most are not new. They are simply being rediscovered. Our ancient elders and kupuna knew of them. Farmers who are in touch with the natural cycle of the earth know of these secrets to growing healthy and nutrient dense food.

GMO taro will not save taro or our commercial farmers. Making the taro resistant to one disease may make it vulnerable to another. Farmers who say that they will not plant or eat the GMO taro but want the research to continue just in case, will end up planting it because if they continue to farm with out regard for true soil fertility, their crops will not be healthy and prone to disease and they will think that they have arrived at that "just in case" time.

My point is that, we need to provide a healthy environment for the taro. Just like us human beings. When the flu is going around, not everyone gets it. Why? Because of what we feed ourselves that help to boost our immune systems. Likewise, the ones who get sick probably have some kind of stress on their bodies. So simple. Let's not unleash a GE live organism that we could never recall if it is later determined that they cause harm.

Also, I don't believe that there are enough regulations to keep this kind of experiment in the lab or greenhouse. Who will be liable? Dr. Susan Miyasaka? UH? HARC? The lab assistants? DOA? USDA? The farmer who plants it? With the demand for organic food growing, will consumers want to buy and eat GMO taro or poi? Would you feed it to your baby? Or your elderly parent?

As a farmer, I know that taro varieties can and will get easily mixed up besides getting crosspollinated naturally or purposely. And gmo taro? That's on a microscopic level and we'd definitely not be able to see the difference. What about the farmer who chooses to grow non gmo taro?

What about the consumer who hopes that the organic or non gmo taro really is non gmo taro?

Please help to support keeping taro pure; keeping its nutritional and medicinal qualities intact; it's genetic integrity pure.

Mahalo nui, Chris Kobayashi, Kalo farmer Wai`oli, Hanalei, Kaua`i Testimony of Chris Kobayashi- Organic Taro Farmer In Support of Ban on GMO-Taro

Aloha mai kakou,

We want a ban on GMO-taro for all varieties of taro in Hawaii. Contamination is forever. Coexistence is impossible.

There are those who say they simply want the research to continue just in case. And they also claim they would never plant it. Do you really believe that? Do you think that this research and technology would stay "safely" in the lab? For the safety of all of us who kanu taro, who cherish it as a family member because it provides and feeds us, for our aina - the land and water- which supports the growing of our food. It is time to stop and think what we are doing to all that is real and all that matters to us as human beings on this planet. Money and the drive to own and control does not make for anything healthy.

Malama Haloa. Malama kalo. Malama `aina. One earth, one iand, one air, one people. Mahalo ke akua.

chris kobayashi p.o.box 135 hanalei, HI 96714 Testimony In Support of Ban on GMO-Taro

Aloha mai kakou

Aloha Senators and Representatives

-Kalo is a hypoallergenic food. If you mess around with that, it ain't going to be hypoallergenic anymore.

-GMO kalo will contaminate our organic taro. Take away our livelihood. We cannot coexist.

-GMO proponents are only thinking about chemicals and their pockets.

-It's not going to be a pure taro anymore. Pure taro is going to be like an artifact. You will only find it in the museum.

Please support a BAN on GMO KALO in Hawaii.

Mahalo,

Demetri Rivera Kalo farmer Wai`oli, Hanalei, Kaua`i

Member of Onipa`a na Hui Kalo, an inclusive statewide organization. Presently member of Kauai Taro Growers Association (KTGA), which does NOT represent my views on kalo.

demetri rivera p.o.box 114 kilauea, HI 96754

In SUPPORT of HB1663 and SB709-SD1

Vince Kana`i Dodge Coordinator, `Ai Pohaku Workshop/Ma`o Farms/WCRC

Aloha kakou.

O wau o Kana`i Dodge. Noho wau ma Wai`anae O`ahu. O Fred and Aiko Dodge ko`u ma makua. He makua wau me elua keiki nui a me ekolu mo`opuna. I'm Vince Dodge and I live in Wai`anae, O`ahu. My parents are Fred and Aiko Dodge. I have two grown children and three granddaughters. I am a part-time kalo farmer. I am a poi maker, cultural practioner and educator.

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I understand that as decision makers you will be lobbied by the very powerful biotech industry and I remind you that you have been elected to represent us- the people, who are busy with all the responsibilities and necessities of daily living. We are not paid to lobby. We have entrusted you, our elected officials to make wise and practical decisions on our behalf and to protect us. We need protection from GMO foods.

GMO technology is unnatural. It involves the forcing together of genes from plants, animals, viruses, pesticides, etc. to create an organism that is unnatural. Then this unnatural genetically modified organism (GMO), which is alive, is set lose in the natural world. It has not been thoroughly tested for its safety (unlike GMO medicines). This is not safe science. This is not operating on the "precautionary principle", which is the foundation of safe science, and this is why we need protection from GMOs. We are at risk here because these unnatural, scientifically unsafe GMOs are fed to us. They are fed to us as feed for the animals we eat or directly to us in the food we buy in the stores. It is fed to us unlabeled. If GMO foods are safe as the industry tells they are it makes sense that they would totally support the labeling of their products. The opposite is true. The GMO industry has spent millions of dollars fighting every attempt to have their products labeled. They don't want GMO foods labeled. They don't want any responsibility for the effects their unnatural, poorly tested scientifically unsafe GMO foods will have on us. That is why we need protection from the GMO food industry. That is why at this time we need a ban on GMO taro.

Mahalo nui loa to all you legislators who are making wise and practical decisions on our behalf and protecting us. We really appreciate and honor your service. This is a kakou thing- we are striving together to keep our home, our food safe and well. Please educate yourselves about the GMO issues. Please watch the DVDs "The Future of Food" and "Islands at Risk". I will be happy to get you copies. My contact information is below. There are many other important reasons to reject the genetic modification of taro and support the ban on GMO taro. They include:

- The cultural significance of kalo/taro
- Real and imagined threats to taro growing and the industry
- Patenting and ownership of GMO crops
- Lawsuits against farmers whose crops are contaminated by GMO
- Public education about GMO
- The real beneficiaries of GMO

I am happy to get you information on any of the above issues or come and discuss them with you and/or your staff.

Ho`opiha kau `eke poi i ka manawa apau, May your poi bowl be always full,

Vince Kana`i Dodge Coordinator, `Ai Pohaku Workshop/Ma`o Farms/WCRC Cell: 478-6492 Home: 696-9837 vince@maoorganicfarms.org IN SUPPORT OF HB1663 and SB709-SD1

Hector Valenzuela, Ph.D. 94-1070 Anania Cr. No. 107 Mililani, Hawaii 96789 Tel. 808-625-1277 <u>hectoruh@yahoo.com</u> http://www2.hawaii.edu/~hector/

RE: TESTIMONY- IN SUPPORT for Ban on GMO-taro Ban research and planting of GM taro in Hawaii

Dear Members of the State Legislature:

I write this testimony in strong support of bills HB1663 and SB709-SD1, which would ban the research and field planting of genetically modified (GM) taro in Hawaii

I have worked as a UH-Manoa Professor and Crop Production Specialist for 18 years, but write this on a personal capacity. My research is in the area of sustainable and ecological agriculture. As someone who supports sustainable agriculture, I have become increasingly concerned about the unregulated open-field plantings of GM crops in Hawaii. In general I have concerns about the health risks, about environmental risks, and also about the long-term cultural and socioeconomic impacts on our communities.

Below I summarize my key positions:

1. Lack of data showing the safety of GM crops.

Statements made by GM proponents are not backed by scientific, peer-reviewed data. No studies have been conducted in Hawaii or elsewhere to evaluate the short- or long-term effects on humans from having consumed GM crops over the past 12 years.

2. Lack of oversight/regulations.

GM crops are poorly regulated or even deregulated. Our federal courts and internal USDA and FDA reports have found that our regulatory agencies are often incapable of detecting potential side-effects from the consumption or planting of GM crops.

3. Unintended Consequences (see references below).

Recent findings in the scientific literature have shown that GM crops do indeed pose potential health risks, environmental risks, and that the benefits to farmers have not always been matched with the promises made by GM proponents.

a. A comprehensive literature review published this month in a scientific journal documents a large number of potential health side effects from the few animal feeding studies that have been conducted to date (Dona and Arvanitoyannis, 2009).

b. A recent refereed publication showed that the commercial planting of GM cotton was NOT more profitable than that of conventional varieties (Post et al. 2008). Similarly, several publications have shown that the yields of GM crops are similar or lower than that of conventional crops.

c. A recent publication from Spain showed that contamination was inevitable and that the principle of co-existence was not working in that country (Binimelis, 2008). Contamination has occurred in all regions where GM crops have been planted. GM corn contamination has been documented in several states of Mexico, even though there is a ban on GM plantings in that country.

d. There are still many unknowns about potential environmental risks. For instance the toxic Bt from GM crops was found to affect non-target organisms in nearby aquatic habitats (Harwood et al. 2005; Rosi-Marshall, 2008). Also, antibiotic genes from Bt crops were found to transfer to microbes in nearby aquatic habitats and aquifers (Koike et al 2007). As another example the Bt toxin from GM corn was found to affect the growth of earthworms in the soil (Zwalhen, 2003).

4. GM taro is not the answer for Hawaii.

My overall assessment is that GM taro is not the answer for farmers in Hawaii, and that GM taro would not contribute toward our self-sufficiency and sustainability. The only plant disease epidemiologist at UH-Manoa concurs, having stated that we already have all of the tools at our disposal to manage the major pests and diseases in taro- by following traditional pest control strategies.

Mahalo for your consideration in support of HB1663.

Sincerely,

Hector Valenzuela 94-1070 Anania Cr. No. 107 Mililani, HI 96789 http://www2.hawaii.edu/~hector/ tel. 808-625-1277

References

Binimelis. R. 2008. Coexistence of plants and coexistence of farmers: Is an individual choice possible? J. Agric. Environ. Ethics. 21(5):1187-7863.

Dona, Artemis and Arvanitoyannis, Ioannis S.(2009). Health Risks of Genetically Modified Foods'. Critical Reviews in Food Science and Nutrition,49:2,164 — 175

JAMES D. HARWOOD, WILLIAM G. WALLIN and JOHN J. OBRYCKI Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Molecular Ecology (2005) 14, 2815–2823

S. Koike, I. G. Krapac, H. D. Oliver, A. C. Yannarell, J. C. Chee-Sanford, R. I. Aminov, and R. I. Mackie. Monitoring and Source Tracking of Tetracycline Resistance Genes in Lagoons and Groundwater Adjacent to Swine Production Facilities over a 3-Year Period. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2007, p. 4813–4823 Vol. 73, No. 15

New York Times, U.N. Urges Radical Changes in Food Production. April 16, 2008.

E. J. Rosi-Marshall, et al. 2008. Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc. National Academy of Sciences. 104(41):16204-16208.

P. Jost, D. Shurley, S. Culpepper, P. Roberts,* R. Nichols, J. Reeves, and S. Anthony. 2008. Economic Comparison of Transgenic and Nontransgenic Cotton Production Systems in Georgia. Agron. J. 100:42–51 (2008)

C. ZWAHLEN, A. HILBECK, R. HOWALD and W. NENTWIG. Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Molecular Ecology (2003) 12, 1077–1086

////////

Professional Bio:

Dr. Hector Valenzuela a full Professor and Vegetable Crops Specialist at the University of Hawaii-Manoa received his Ph.D. from the University of Florida. Dr. Valenzuela has conducted applied agroecology research for 23 years in support of commercial farmers, organic farming, and sustainable agriculture. He has authored over 380 technical and educational publications, has conducted over 200 field research trials with over 60 different vegetable and cover crop species, has organized over 60 field days and workshops for farmers in Hawaii and the Pacific Region, given over 200 presentations, and has participated in 13 international assignments. A staunch supporter of organic and sustainable farming in Hawaii, Dr. Valenzuela established the first long-term organic research plots in Hawaii in 1993, the longest-running organic research project in the Pacific Region, and established the first Web sites to assist vegetable farmers (1998) and organic farmers (2005) in the Pacific Region.

Professional contact Information

Hector Valenzuela, Ph.D. Professor and Vegetable Crops Extension Specialist College of Tropical Agriculture and Human Resources University of Hawaii at Manoa 3190 Maile Way No. 102 Honolulu, HI 96822-2279 t. 808-956-7903 f. 808-956-3894 <u>http://www2.hawaii.edu/~hector/</u> <u>http://www.ctahr.hawaii.edu/organic/</u> Mark Alapaki Luke

2645 Dole St. 103A Honolulu, 96822 808-973-0975, markluke@hawaii.edu

Taro Farmer- Wailua 'Auwai lo'i in Kahana Valley, Kamakakūokalani Center for Hawaiian Studies, Ka Papa Lo'i o Kānewai, 'Onipa'a Nā Hui Kalo, Geography Dept at Honolulu Community College, and the East-West Center International Board

TESTIMONY- IN SUPPORT Ban of Genetically Modified Taro (HB1663 & SB709-SD1)

Aloha Honorable Legislators,

For over 1200 years farmers in Hawai'i have cared for and have protected the most extensive collection of varieties of taro on the planet. In Hawai'i, taro is the plant of the people- it is our living culture and ancient history, native nutrition and ecological tradition. Taro provides a beloved and unique hypoallergenic food, medicine, sustainable agriculture, and industry for Hawai'i. Genetically modifying any variety of *kalo* (taro) is culturally disrespectful and also poses irreversible and irresponsible dangers to our food, health, environment and economy.

Native planters of the $w\bar{a}$ kahiko (old days) were proficient in managing over 300 varieties of kalo tailored for different uses, these varieties were acquired through natural propagation and farming. From these $k\bar{u}puna$ (ancestors and elders) we have been fortunate to receive their '*ike* (knowledge) and live a lifestyle that is perpetuated with planting *kalo*, researchers and corporations are willing to disrespect this tradition that has been working of many generations. Each variety has qualities suited for different environments and uses, therefore satisfying sustainability and longevity. Other work around the world with genetically engineered crops have unfolded inevitable risks, such as elimination of diverse crops, and risk of famine due to catastrophic loss of crops that are the sole surviving species. These unknown risks are alarming, and at the same time ownership of the only surviving variety of *kalo* will result in a monopolized control of our most valuable source of the Hawaiian culture.

I support sustainable farming & precautionary scientific research that does not expose the taro species to the disrespect and risks of genetic engineering. I ask that the lawmakers actively support farmers/scientists in publicly accepted and safely advanced methods of protecting *kalo* by addressing land & water issues and controlling invasive pests & diseases. I also ask that the legislators pursue other avenues such as more public lands to grow *kalo* and more access to the water for growing *kalo*. I also ask the legislators to really find the truth behind the research in genetically modified organisms (GMO) of *kalo*, do they really want to help the farmers, or are there other reasons, what's at stake for these entities, do they enjoy eating poi? Do they have fame and money as their number one priority? Certain entities that are focused on pursuing genetically modification of *kalo* have given reasons that resemble scare tactics, they seem to know what the *kalo* planter needs, even though they aren't the taro farmers in the fields who really understand the real situation. They claim that they can combat the apple snail, the number one reason for crop yield declines, are their GMO varieties made of plastic or are

they going to be toxic? I don't see how they can create a variety that will combat this invasive pest that was introduced by people who had a "bright idea" to help Hawai'i, how many times has this happened

and been catastrophic? Are they willing to give up their royalties and patents of ownership of our living ancestor, because they "really" want to help the *kalo* industry and the people who enjoy the poi? Because of the resistance encountered from many people and organizations in recent years, GMO proponents are no longer wishing to genetically modify Hawaiian varieties, now they pursue other non-Hawaiian varieties. As scholars, I would think they know the origin for all taro, which came with the voyagers from the same place, what makes the Hawaiian varieties different from the others? More

importantly, if allowed to genetically modify the non-Hawaiian varieties here in Hawai'i, where are

they going to plant these synthetic varieties, here in this *'āina* (land & environment), of Hawai'i? This wouldn't be *pono* (proper) and would be very disrespectful to contaminate this *'āina*, and to also be deceptive about their intentions while carrying this out!

Kalo is an incomparably sacred and valuable part of our island community. We join *mahi'ai* (farmers) of Hawai'i in calling on you and your fellow legislators to protect all of us and Hawai'i's unique culture and resources by passing a law to provide a ban on the genetic modification and patenting of taro. As faculty and staff who teach the Hawaiian culture and the importance of the ' $\bar{a}ina$ which is the source of the culture, how should I explain to my students that the Hawaiian culture is not respected by Hawai'i's government? How do I tell them that the very foundation of Hawai'i's heritage is being altered by greedy and irresponsible scientific research?

In conclusion, please consider my plea for Hawai'i to preserve our heritage and the integrity of the *kalo* plant. I am in favor of banning research and growing of GMO taro.

Mālama Pono,

Me ka ha'aha'a (with humility),

Mark Alapaki Luke

University of Hawai'i at Mānoa Kamakakūokalani Center for Hawaiian Studies, Honolulu Community College & Ka Papa Lo'i o Kānewai 2645 Dole Street Honolulu, Hawai'i 96822 Testimony of Mark S. Alapaki Luke (kalo planter in Kahana Valley) In Support of Ban on GMO-Taro

Aloha mai kakou,

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any informed community consent, raising serious ethical science concerns. Businesses and researchers in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama 'Aina,

Mark S. Alapaki Luke (kalo planter in Kahana Valley) Kumu (Teacher) University of Hawaii at Manoa (Hawaiian Studies) & Honolulu Community College (Hawaiian Studies & Geography)

Mark Alapaki Luke P.O. Box 11085 103A Honolulu, HI 96828 In SUPPORT OF HB1663 & SB709-SD1 Walter Andrade Kona and Kalopa Farmer

To the Hawaii Legislators: RE: GMO Legislation in State of Hawaii.

For once can we just use common sense in making long terms decisions that affect the health and welfare of our people...

As publicly elected officials you have a responsibility to protect the people of Hawaii. Caution is strongly advised on allowing GMO to taint our food supply.

Unfortunately, pollinating GMO strains become invasive when released into the environment. By their virulent nature GMO strains infect and dominate the gene pool forever. You CAN NOT recall a GMO strain once introduced. Case in point is the accidental release of GMO rice after Hurricane Katrina destroyed the GMO testing facility, cross pollination of soybean in Canada, accidental mishandling and release of GMO corn seed to Central American countries and the list goes on. The fact remains that you CAN NOT recall a GMO strain once introduced.

It is all too common that a well meaning scientific community together with profit oriented corporations makes hasty decisions with disastrous consequences. Case in point, DDT, Pesticides, CFC's, Cigarettes and Hydrogenated Oils, all market driven profit centers for large corporations and allowed without through study or applying the <u>Precautionary Principle</u>. Twenty years from now if we find that trans-genetic organisms in the food supply cause cancer, birth defects, immune deficiencies or worse, we would struggle to mitigate the consequences because we CAN NOT recall those GMO strains from the gene pool.

Please apply the Precautionary Principle... it is there for a reason... it's just common sense. <u>http://en.wikipedia.org/wiki/Precautionary_principle</u>

I understand the pressures you have in making this decision as evidenced by the number of Bills being generated to address the GMO issue... You are not the first to be faced with applying the Precautionary Principle to this GMO dilemma. <u>http://www.i-sis.org.uk/prec.php</u> and you are not alone on this issue, 68 nations, 828 scientists from 38 countries support rethinking of GMO testing and propose a 5 year moratorium on GMO testing until further study can be done. <u>http://www.i-sis.org.uk/list.php#list</u>. Please review the white paper from The Bio Safety Protocol and the UN Convention on Biological Diversity

http://philosophy.wisc.edu/streiffer/CourseFolders/HOM565S01Folder/Biosafety%20Position %20Paper.pdf

Just because multinational corporations have top down political clout and influence through established financing mechanisms at the university and land grant colleges with the support of federal and international regulatory agencies, doesn't make GMO a wise course to follow... Sometimes being cautious and saying no to money interests is the right answer.

My opinion, as a coffee and vegetables farmer, is the GMO approach to solving our agricultural challenges is extremely risky, not well thought out, is seriously under studied, and controversial for many valid reasons...

My position, as a coffee and vegetables farmer is simple. GMO strains released accidentally or intentionally take away my freedom of choice to consume, grow, market and sell non GMO food products. Any GMO introduction will destroy my market for specialty Kona Coffee. My coffee sold at commodity grade prices \$3.00 lb will force me into bankruptcy as well as other growers involved in meeting the expanding markets for non GMO or Organic Foods. There is no current way to contain pollen drift and consequently no way for Non GMO and Organic farming to coexist GMO farming.

Agriculture is really pretty simple as understood and practiced for thousands of years by large sophisticated cultures. It starts with the soil... A healthy, fertile soil is a dynamic organism, full of microbial and fungal life that transforms organic matter into humus. Humus is a stable byproduct that provides all the nutrients, trace minerals and gases necessary for sustained vegetative outputs. If you acknowledge that fact and support soil fertility in your agricultural practices, food production becomes sustainable and profitable. Healthy soils produce healthy plants, which when consumed produce healthy people and animals. On the other hand, a sick unbalanced soil produces disease, first in the soil, then in the plants and then in the animals and people who consume them.

Until we get back to applying this knowledge in agriculture we will be chasing the problems, we created, with back end solutions like GMO and oil based chemical fertilizers, pesticides and herbicides. Sick plants from sick soils are stressed and attract pests, who by the way are only doing their job of eliminating weakness in the natural ecosystem.

oAmory Lovins, CEO of Rocky Mountain Institute, "If we don't understand how things are connected, often solutions become the problem".

While the Biotech Industry has made significant contributions in medical research, and I am not saying there isn't a place for them or the "tools" they develop in Agriculture, I just don't believe that GMO in our food supply is a good idea, especially when the testing has not been done and the consumer is not given the choice. The potential risks far outweigh the potential benefits. Caution is strongly recommended. The UH can and will find other agricultural problems to study and make meaningful, less risky contributions to our ag economy until the GMO issue can be worked out.

Even though I do not support GMO in agriculture... If you folks enact laws that allow Hawaii to continue with GMO research, testing and field trials, we must demand, through legislation, that GMO research, testing and field trials follow the established Control Group Protocol used in all valid experiential testing. <u>http://en.wikipedia.org/wiki/Control group</u>

Due to the invasive nature and permanence of GMO strains in the food chain it would be prudent to establish the entire Big Island as the Control Group for any ongoing GMO research, testing, and field trials. Being upwind of the other Hawaiian Islands may give us some measure of protection against pollen drift cross contamination and physical isolation from experiments gone wrong. This way the Big Island can make a significant contribution to Hawaii's food security and agricultural research at the same time.

- We must establish the Big Island as a GMO Free Zone for all research, testing and field trials related to human and animal food and or seed production.
- o Exemption to the law would be allowed for non-food related agricultural industries like

orchids and other cut flowers as well as for the Papaya industry, because GMO strains hav already been released and are found widely in the wild plant population.

If you folks don't demonstrate respect for GMO risks to public health and safety, the cultural aspects of taro and the economic aspects of non GMO related farming, you may be committing political suicide. Basically you can piss off a few multi national companies and UH researchers or you can piss off a whole lot of voters...

Just follow the Precautionary Principle and you can put the responsibility back on the GMO companies where it belongs and protect yourselves, your kids, your grand kids and neighbors from eating questionable foods.

Aloha nui, Walter Andrade Kona and Kalopa Farmer P.O. Box 586 Holualoa, HI 96725 (808) 937-8599 cell (808) 322-3520 fax walman1@hawaii.rr.com February 9, 2009 To: Hawaii Legislators From: Walter Andrade, Farmer

RE: SUPPORT GMO Legislation in State of Hawaii.

For once can we just use common sense in making long terms decisions that affect the health and welfare of our people. As publicly elected officials you have a responsibility to protect the people of Hawaii. Caution is strongly advised on allowing GMO to taint our food supply.

Unfortunately, pollinating GMO strains become invasive when released into the environment. By their virulent nature GMO strains infect and dominate the gene pool forever. You CAN NOT recall a GMO strain once introduced. Case in point is the accidental release of GMO rice after Hurricane Katrina destroyed the GMO testing facility, cross pollination of soybean in Canada, accidental mishandling and release of GMO corn seed to Central American countries and the list goes on. The fact remains that you CAN NOT recall a GMO strain once introduced.

It is all too common that a well meaning scientific community together with profit oriented corporations makes hasty decisions with disastrous consequences. Case in point, DDT, Pesticides, CFC's, Cigarettes and Hydrogenated Oils, all market driven profit centers for large corporations and allowed without through study or applying the <u>Precautionary Principle</u>. Twenty years from now if we find that trans-genetic organisms in the food supply cause cancer, birth defects, immune deficiencies or worse, we would struggle to mitigate the consequences because we CAN NOT recall those GMO strains from the gene pool.

Please apply the Precautionary Principle... it is there for a reason... it's just common sense. <u>http://en.wikipedia.org/</u> wiki/Precautionary_principle

I understand the pressures you have in making this decision as evidenced by the number of Bills being generated to address the GMO issue... You are not the first to be faced with applying the Precautionary Principle to this GMO dilemma. <u>http://www.i-sis.org.uk/prec.php</u> and you are not alone on this issue, 68 nations, 828 scientists from 38 countries support rethinking of GMO testing and propose a 5 year moratorium on GMO testing until further study can be done. <u>http://www.i-sis.org.uk/list.php#list</u>. Please review the white paper from The Bio Safety Protocol and the UN Convention on Biological Diversity <u>http://philosophy.wisc.edu/streiffer/CourseFolders/HOM565S01Folder/Biosafety%20Position%20Paper.pdf</u>

Just because multinational corporations have top down political clout and influence through established financing mechanisms at the university and land grant colleges with the support of federal and international regulatory agencies, doesn't make GMO a wise course to follow... Sometimes being cautious and saying no to money interests is the right answer.

My opinion, as a coffee and vegetables farmer, is the GMO approach to solving our agricultural challenges is extremely risky, not well thought out, is seriously under studied, and controversial for many valid reasons...

My position, as a coffee and vegetables farmer is simple. GMO strains released accidentally or intentionally take away my freedom of choice to consume, grow, market and sell non GMO food products. Any GMO introduction will destroy my market for specialty Kona Coffee. My coffee sold at commodity grade prices \$3.00 lb will force me into bankruptcy as well as other growers involved in meeting the expanding markets for non GMO or Organic Foods. There is no current way to contain pollen drift and consequently no way for Non GMO and Organic farming to coexist GMO farming. Agriculture is really pretty simple as understood and practiced for thousands of years by large sophisticated cultures. It starts with the soil... A healthy, fertile soil is a dynamic organism, full of microbial and fungal life that transforms organic matter into humus. Humus is a stable byproduct that provides all the nutrients, trace minerals and gases necessary for sustained vegetative outputs. If you acknowledge that fact and support soil fertility in your agricultural practices, food production becomes sustainable and profitable. Healthy soils produce healthy plants, which when consumed produce healthy people and animals. On the other hand, a sick unbalanced soil produces disease, first in the soil, then in the plants and then in the animals and people who consume them.

Until we get back to applying this knowledge in agriculture we will be chasing the problems, we created, with back end solutions like GMO and oil based chemical fertilizers, pesticides and herbicides. Sick plants from sick soils are stressed and attract pests, who by the way are only doing their job of eliminating weakness in the natural ecosystem. • Amory Lovins, CEO of Rocky Mountain Institute, "If we don't understand how things are

connected, often solutions become the problem".

While the Biotech Industry has made significant contributions in medical research, and I am not saying there isn't a place for them or the "tools" they develop in Agriculture, I just don't believe that GMO in our food supply is a good idea, especially when the testing has not been done and the consumer is not given the choice. The potential risks far outweigh the potential benefits. Caution is strongly recommended. The UH can and will find other agricultural problems to study and make meaningful, less risky contributions to our ag economy until the GMO issue can be worked out.

Even though I do not support GMO in agriculture... If you folks enact laws that allow Hawaii to continue with GMO research, testing and field trials, we must demand, through legislation, that GMO research, testing and field trials follow the established Control Group Protocol used in all valid experiential testing. <u>http://en.wikipedia.org/wiki/Control_group</u>

Due to the invasive nature and permanence of GMO strains in the food chain it would be prudent to establish the entire Big Island as the Control Group for any ongoing GMO research, testing, and field trials. Being upwind of the other Hawaiian Islands may give us some measure of protection against pollen drift cross contamination and physical isolation from experiments gone wrong. This way the Big Island can make a significant contribution to Hawaii's food security and agricultural research at the same time.

• We must establish the Big Island as a GMO Free Zone for all research, testing and field trials related to human and animal food and or seed production.

• Exemption to the law would be allowed for non-food related agricultural industries like orchids and other cut flowers as well as for the Papaya industry, because GMO strains have already been released and are found widely in the wild plant population.

If you folks don't demonstrate respect for GMO risks to public health and safety, the cultural aspects of taro and the economic aspects of non GMO related farming, you may be committing political suicide. Basically you can piss off a few multi national companies and UH researchers or you can piss off a whole lot of voters...

Just follow the Precautionary Principle and you can put the responsibility back on the GMO companies where it belongs and protect yourselves, your kids, your grand kids and neighbors from eating questionable foods.

Aloha nui, Walter Andrade Kona and Kalopa Farmer P.O. Box 586 Holualoa, HI 96725
Testimony of Ed Wendt Taro Farmer, Wailuanui East Maui

In Support of Senate Bill 709-SD1 and HB1663

Dear Committee Members:

Please support Senate Bill 709-SD1 and House Bill 1663, that would impose a moratorium on all testing, propagating, cultivating, growing and raising genetically engineered taro in Hawai'i, and apply to genetically-modified plants brought in from outside Hawai'i as well. Passage of this bill will ensure the safety and perpetuation of our native kalo, and I urge your support.

Our 'ohana have been full-time kalo farmers in Wailuanui, East Maui for many generations. My sons and grandchildren work lo'i kalo alongside me and my brother. The species of kalo that we farm have been cultivated in our village families for many generations. The kalo is strong, nutritious and although our 'ohana has encountered many challenges (various diseases, foreign snail infestations, lack of water), we have preservered and continue to grow kalo for our families. Allowing GMO kalo would put our lo'i kalo at great risk and adulterate Hawaiian kalo species that our families have been cultivating for many generations. There is data which suggests there is no way to secure existing species from contamination once GMO experimentation is permitted.

We urge your support of S.B. 709-SD1 and H.B.1663 in order that we can continue to perpetuate, practice and honor our Hawaiian traditions and culture.

Mahalo for this opportunity to testify.

Ed Wendt P.O. Box 961 Haiku, Hawai`i 96708 Testimony of Leslie Yee Hoy, Taro Farmer, Halawa Valley- Molokai

In Support of Ban on GMO-Taro

Aloha mai kakou,

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any informed community consent, raising serious ethical science concerns. Businesses and researchers in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama 'Aina,

Leslie YEE hoy Halawa Valley Molokai, HI 96734

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama 'Aina,

Leslie Yee Hoy 1305 Hele Kailua, HI 96734

Kaloman

February 17, 2009

Governor Linda Lingle Lt. Governor Duke Aiona House of Representatives Senate Representatives

Re: Legislative Bills on Taro and Water

Aloha,

As one of the few Hawaiian Taro farmers, 7th generation mahi`ai and lawai`a, I appeal to you to support our cause to maintain the purity of the Hawaiian taro, increase water access, provide more land and provide financial assistance and disaster insurance.

What we need is to become more sustainable, as were our kupuna of days of old. What we need today is for leaders such as yourselves to be bold, to stand up for what you know is pono and not yield to compromise that will undermine the life of our lands. For Ke Akua says, do not commit blasphemy against the land, for this will be an abomination.

Support our cause to maintain the purity of the Hawaiian taro and kalo lifestyle. Support the increase of water access in favor of the mahi`ai. Support the provision of more lands for farming. Support financial assistance and disaster insurance in favcor of the mahi`ai.

Our Ali`i knew that their success was dependent on the foundation of its people, for indeed the "*life of the land is perpetuated in righteousness"*. Thus the Hawaii State Constitution placed the kuleana of the lands above all things. Doing pono and making pono for all things upon the land increased the prosperity of its people. As Kumu John Kaimikaua stated so well, "when the land flourishes, so does it's people".

On May 1, 1959 our state motto was adopted by Joint Resolution No.4 of the 30th Territorial Legislature.

Today in this 2009 Legislature you are the centennials that stand watch upon the land and its people. Do not let us be ambushed. Stand firm upon the aina, with and for its people.

Ua mau ke ea o ka aina I ka pono ...The life of the land is perpetuated in righteousness.

George Keoki Ruisuki Fukumitsu Mahi`ai a me Lawai`a Hakipu`u Ahupua`a Ko`olaupoko ~ Oahu Island

Kipahulu `Ohana

PO Box 454, Hana, HI 96713 www.kipahulu.org

Hawaii State Legislature

February 18, 2009

Aloha,

I am writing on behalf of the Kipahulu Ohana to urge your support of a ban on the genetic modification of kalo in Hawai'i.

Kipahulu Ohana is a nonprofit organization founded in 1995 by descendents of the Kipahulu moku in East Maui in order to promote the practice of traditional ahupua'a management, restoration and education. Since 1995, through a Cooperative Agreement with the National Park Service, we have operated Kapahu Living Farm within the Kipahulu section of Haleakala National Park where we farm over three acres of ancient kalo lo'i that has been restored to active production.

Kapahu Living Farm is managed by our Project Director and traditional konohiki John Lind. Through the knowledge passed down to him and his personal experience, Lind has identified several varieties of Hawaiian kalo that he chooses to cultivate, because they are hearty and make high quality poi.

Our production is completely organic—we use no chemical fertilizers or pesticides. While we do have minor challenges with some diseases, Lind has found that these challenges can be adequately addressed by ensuring a plentiful flow of cold water around and through the lo'i, using green manure (weeds) buried in the lo'i to feed the kalo plants along with other natural fertilizers, and other traditional techniques.

From a practical standpoint, we have no interest or need for genetically modified varieties of kalo. From a cultural and spiritual standpoint, we want to emphasize the deep connection Hawaiians have with Haloa, and strongly oppose the genetic modification of this plant that is the single most important plant in the Hawaiian culture, considered as the elder brother of the Hawaiian people.

We ask that you support measures to prohibit the development, testing, propagation, release, importation, planting, or growing of genetically modified taro in the State of Hawaii.

Mahalo, Just Cr

Scott Crawford Executive Director Support for Ban on GMO-Taro From Joan lander (Taro Grower)

Aloha mai,

We live in Ka'u on Hawai'i island and plant taro in our yard.

We are very happy that our county council listened to the voices of taro growers and consumers and passed a ban on GMO taro on our island.

Now this ban needs to be extended to all islands.

This food plant is too important to our health to be interfered with.

We all need to consume taro in its pure form.

If you allow people to tinker with taro's genetics, we can never again be sure that the taro we eat is safe.

Growers will not exchange huli anymore for fear of planting taro that is unsafe, thus breaking down a centuries-old tradition of sharing huli.

Why would you want to destroy the solidarity of our taro-growing communities and introduce fear and anxiety into the most important agricultural activity in Hawai'i?

You as lawmakers must act on behalf of the people, not the few determined to manipulate the basic foods we eat, no matter the cost.

Do the right thing and protect, at the very least, this plant that is the heart and soul of Hawai'i.

Joan Lander PO Box 29 Na'alehu, Hawai'i 96772-0029 In Support of Ban on GMO-Taro

Daniel Bishop & 'Ohana- Taro Farmers

My name is Daniel Bishop and, together with my wife, four sons, and their families, are Kalo farmers in Waiahole valley. We have also been members of Onipaa Na Hui Kalo since it's beginning. I am writing this letter to voice our support for a ban on any type of research which has to do with genetically modifying any Kalo.

Respectfully submitted;

Daniel Bishop

Attention: State of Hawai'i Legislators STRONG SUPPORT FOR BAN ON GMO-TARO

From: Robert Kealohapumehana Domingo (Kalo Planter)

O O'ahu Kakuhihewa ka mokupuni

O Ko'olauloa ka moku

O Ka'a'awa ke 'ahupua'a

Aloha mai kakou,

O wau o Robert Kealohapumehana Domingo and I am writing to srongly encourage all legislators and lawmakers to support and pass SB709 moratorium on developing, testing, propagating, cultivating, growing and raising genetically engineered taro in the state of Hawai'i.

It is well known and documented within the Hawaiian genealogy chant or Kumulipo, that taro, kalo, or colocasia esculenta, honored Kupuna Haloa Nakalaukapalili is said to be the elder brother of Kanaka or mankind. As a Kanaka Maoli or native Hawaiian, Hawaiian cultural practitioner, head of household, husband, father of three children, haumana mahi'ai kalo, traditional style poi maker or ku'i 'ai practitioner, kalo grower and consumer, supporter and parent of the Hawaiian language immersion schools, taxpayer and voter, I must make my voice and mana'o or opinion heard loud and clear: *Genetic modification of kalo is DISRESPECTFUL !! GMO taro is NOT PONO! It is not necessary and not wanted. Genetic engineering of Hawaiian kalo should not be allowed within these islands or anywhere else for that matter.*

Kalo, not only a spiritual center or piko of Hawaiian culture, a traditional symbol of the 'ohana structure, has been the staple food of Hawaiians since the beginning of time, and for many other cultures in more recent years. We the Kanaka Maoli for well over a thousand years have been growing and have been sustained and nourished by kalo planted in the traditional methods. Especially in the form of poi, kalo was eaten by all branches of the 'ohana from the oldest kupuna perhaps in their deathbed to the newest of infants still upon their mother's breast. Poi was widely known by the po'e kahiko or people of the past, to have many benefits: tremendous nutritional value, ease of digestion (complex carbohydrate), it is also hypoallergenic thus eliminating the concern for allergic reaction. It would be disastrous to allow such an extremely valuable and irreplaceable resource to become contaminated, mutated and exposed to the risk altering it's proven "super-food" qualities. Genetic modification is commonly known to inherently introduce undesirable properties including possible allergens and antibiotic resistant genes. Keep kalo pure! Altering taro is unsafe and is BAD SCIENCE!

The po'e kahiko were extremely knowledgeable of the 'aina and of our fragile yet bountiful environment. They knew how to properly utilize the resources and viewed the land as a sacred. "Ua mau ke 'ea o ka 'aina i ka pono: the life of the land is perpetuated in righteousness" If we disturb the pono or balance of the 'aina, we are destined to suffer the consequences. It has been documented that the kanaka maoli once had upwards of 300 varieties of kalo developed naturally through generations of a natural conventional hybrid process. Today there is said to be only approximately 80 varieties remaining. The modern colonized ideals of profit, ownership, convenience, overdevelopment, misuse of land, water and other natural resources, overall short sightedness and a lack of due care has begun to outweigh our traditional values and has taken a toll on our 'aina and ultimately our beloved Kalo. Lo'i kalo or traditional wetland taro patches, once had thriving veins of cold water fed by a clean and well maintained kahawai or stream. Today, our streams are reduced, many to a trickle, some have gone dry. Mahi'ai kalo once had enough acreage to allow them to let their patches lay fallow after harvest in order to replenish natural nutrients, rather than immediately replanting time and time again in depleted soil compensated with large amounts of fertilizers and chemicals, a common practice today due to limited access to lands suitable for taro farming.

Another particularly interesting part of traditional methods of planting has actually been under review again in recent times, diversification. Planting many taro varieties with different characteristics that may adapt to various conditions such as higher salinity in lower elevations closer to the ocean, heat and drought resistant varieties, varieties that could be left without being harvested for extended periods of time. Another poor practice common in taro farming today is known as mono-cropping, of course the exact opposite of the traditional theories of diversification, single or limited varieties planted to fit commercial guidelines are forcing farmers to plant crops not ideal for their individual farm environments and conditions thus limiting proper growth and reducing crop volume and quality. These factors contribute to many of the struggles faced by taro farmers today. The poor practices of misuse and neglecting the 'aina need to be modified, not our kalo! GMO kalo is UNECCESSARY!!

Our kupuna were truly the greatest scientists. They had hundreds of names for different winds, they studied thousands of different native plants and had thousands of different uses, they navigated the Pacific using the winds, stars and currents, in hand crafted vessels with hand made tools, they could build homes, fishponds, great altars and dry stacked stone walls that stood firm for centuries, they knew that in order to survive, they had to use what the 'aina had to offer, and that they did. It's time that we look to the past to learn for the future.

In closing, I have discussed only a few of the many reasons to protect our beloved elder brother Haloa Nakalaukapalili, the taro. I strongly feel that a BAN on GMO taro as described in SB709 is imperative. Let us remember that the 'aina is a limited resource and our decisions today will have great impacts for the generations of tomorrow. Keep our kalo pure and preserve it for generations to come. I sincerely hope that you, the elected lawmakers of this state, will heed my recommendation. It is time that we the people of Hawai'i heed the advice of our Kupuna. "He ali'i ka 'aina, he kauwa ke kanaka; The land is the chief and we the kanaka are the servants"

Malama 'aina, Malama Haloa Nakalaukapalili! Robert Kealohapumehana Domingo Testimony of Demetri Rivera- Organic Taro Farmer In Support of Ban on GMO-Taro

Aloha mai kakou,

Ban GMO taro research and growing in Hawaii. Contamination is real. Contaminate one, you contaminate all. Just look at the papaya industry.

I am an organic kalo farmer and this is my livelihood. We cannot coexist with GMOs.

Malama Haloa Malama `aina Mahalo

Demetri Rivera P.O.Box 114 Kilauea, HI 96754

Testimony of Ed Wendt, East Maui Taro Farmer

In Support of House Bill 1663

Dear Committee Members:

Please support House Bill 1663, that would impose a moratorium on all testing, propagating, cultivating, growing and raising genetically engineered taro in Hawai`i, and apply to genetically-modified plants brought in from outside Hawai`i as well. Passage of this bill will ensure the safety and perpetuation of our native kalo, and I urge your support.

Our `ohana have been full-time kalo farmers in Wailuanui, East Maui for many generations. My sons and grandchildren work lo`i kalo alongside me and my brother. The species of kalo that we farm have been cultivated in our village families for many generations. The kalo is strong, nutritious and although our `ohana has encountered many challenges (various diseases, foreign snail infestations, lack of water), we have preservered and continue to grow kalo for our families. Allowing GMO kalo would put our lo`i kalo at great risk and adulterate Hawaiian kalo species that our families have been cultivating for many generations. There is data which suggests there is no way to secure existing species from contamination once GMO experimentation is permitted.

We urge your support of H.B. 1663 in order that we can continue to perpetuate, practice and honor our Hawaiian traditions and culture.

Mahalo for this opportunity to testify.

Ed Wendt P.O. Box 961 Haiku, Hawai`i 96708

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term

scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to tamper with the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama 'Aina,

Keoki Kahumoku 358 ululani street Hilo, HI 96720

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any informed community consent, raising serious ethical science concerns. Businesses and researchers

in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama 'Aina,

Jason Ito 5-5435 Kuhio HWY Hanalei, HI 96714

Aloha mai kakou

We are an organic farm called Sunny Kapoho Citrus in the Kapoho area of Puna on the Big Island. We produce oranges and banana but not papaya because the environment here is polluted with GMO papaya.

We began growing taro when Hawaii County Council bill# 361 was passed to prevent the environment from being polluted with GMO taro. We are so glad for this because taro is growing better than other vegetables here.

Here in paradise where nature provides so abundantly we can choose exclusively from Naturally Evolved Organisms (NEO). Those who would choose GMO instead would pollute the environment at our expense, externalizing their costs for monetary gain, and that would be irresponsible behavior.

Malama Aina,

David Webb PO Box 2167 Pahoa, HI 96778

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Nalei Kahakalau P.O. Box 1764 Honokaa, HI 96727

Aloha mai kakou

I have been growing taro in Kurtistown for nearly 30 years, and before that I grew taro on Oahu. On Our Malu-Aina farm we have more than 30 varieties of taro. Today we marketted organic taro leaves and root to Island Naturals Hilo store. Last Wed. we donated 50 pounds of taro leaf for the new Hawaiian pastor's luau at Ola'a Hawaiian Congregational Church in Kurtistown.

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a

family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any informed community consent, raising serious ethical science concerns. Businesses and researchers in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Jim Albertini P.O. Box AB Kurtistown, HI 96760

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Kane Turalde PO Box 1022 PO Box 1022 Waimea, HI 96796

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Steven Hookano 245 wailua road haiku, HI 96708

Aloha mai kakou

As a beekeeper, I understand all too well the dangers of genetically engineered organisms contaminating the pollen collected by honeybees, and through them spreading into non-gmo crops. Pollen are microscopic particles and very difficult to contain. There is no need for genetic modification on such a healthy, and culturally sacred plant. There is no room in this already devastated ecology for mistakes! And mistakes always happen... killer bees, varroa mites, coqui... and these are all large organisms!

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic

modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any informed community consent, raising serious ethical science concerns. Businesses and researchers in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

alison yahna po box 679 ka'alualu rd na'alehu, HI 96772

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Donald Cooke 47-146 APulama Rd Kaneohe, HI 96744

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Kyle Nakanelua Kauhikoalani Pl. Haiku, HI 96708

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Mele Coelho 230 Kaelepulu st. Kailua, HI 96734

Aloha mai kakou

Representing the collective voice of many residents from the island of Molokai, I am asking our Hawaii State Legislature to protect our island as well as the State of Hawaii from the potentially damaging effects occurred by the introduction, propagation and experimentation of genetic modification of all taro varieties grown within the State of Hawaii.

The introduction of genetically engineered taro has the potential of creating irreversible damage to our native ecosystems, demonstrates a complete disregard for Native Hawaiian Culture and allows for privatized patenting of Hawaii's natural resources.

The genetic modification of crops in general is an infant science whose complete effects are yet to be known. Many documented cases of the harmful health effects on humans of GMO crops exist including- allergenic problems, respiratory problems, intestinal reactions and skin problems. Further conclusion through reasonable scientific deduction suggests increases in miscarriages, birth defects and cancer. Regardless of these evidences, adequate studies in regard to the effects of GMO crops on humans have not been conducted.

In laboratory tests on mice and rats scientific laboratory tests unequivocally reveal that genetically modified crops have caused damage to kidneys, stomach lesions, sterility, excessive cell growth to the small intestine and even death. Field studies on cows, goats, sheep and pigs have revealed similar devastating results.

Taro remains the world's only allergy-free carbohydrate and contributes significantly to the welfare and health of human life. On the other hand the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus, any transgenic contamination to indigenous varieties of taro as well as to other natural growing varieties of taro, has the potential of robbing Native Hawaiians and consumers alike of this uniquely important medicinal food source.

At this time we understand there to be no proven benefits of GMO Taro to taro farmers or consumers and all proposed benefits remain to be purely speculative. The Taro Security and Purity Task Force, established under Act 211, has acknowledged that GMO Taro is not the best available science needed to safely perpetuate taro farming or the most suitable option in protecting consumers in Hawaii. Options for the control of taro disease include cold water induction, reduction of over planting and recent developments which include the introduction of non contaminating fish toxins to successfully control such diseases.

In representing the community of Molokai, we will not tolerate such disrespect of our culture, blindly except the potential damaging consequences to our 'aina or except the health risks placed upon our people .

Mahalo,

PDF processed with CutePDF evaluation edition www.CutePDF.com

Steve Morgan/ Hui Ho'opakele 'Aina

Steve Morgan P.O. Box 72 Maunaloa, HI 96770

-

Aloha mai kakou

My name is Seth Raabe. I am a farmer at Kikoo in Kipahulu on the Island of Maui. I plant kalo along with many other things in a natural way. There is always abundance so we are supported economically as well as physically nourished.

I firmly believe that a viable future for these Islands can only be achieved by returning to balance with our environment.

This is why I am calling out to all of you to support the bill banning genetic modification of our life staple. To not protect our main food source in a natural state would be sheer stupidity. Look around the world. Look at Mexico... contaminated beyond repair. Hawaii nei is the heartland of the kalo plant; by far the greatest diversity of varieties in one place on Earth. I hope this is common knowledge for all of you making this decision.

So I respectfully ask each and every one of you voting on these bills to look into your heart and ask what is more important for our future: continuing the natural legacy of the kalo plant, or giving it up for an elite sector to gain patent rights and power to alter our life staple. Think of the consequences of both paths.

From Kipahulu,

Seth Raabe HCR1 Box 170 Hana, HI 96713
Testimony In Support of Ban on GMO-Taro

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

informed community consent, raising serious ethical science concerns. Businesses and researchers in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Thomas Young 46-193 Lilipuna Rd. Kaneohe, HI 96744 Testimony In Support of Ban on GMO-Taro

Aloha mai kakou

My husband and I farm taro on the East side of Maui in Wailuanui. We strongly urge you to support and pass the ban on genetically modified taro. Not only is this culturally appropriate, it is a matter of protecting the one type of hypoallergenic starch IN THE WORLD. it is for this reason alone that the taro ban should be in effect for ALL TYPES OF TARO, not just the hawaiian varieties.

Taro, Haloa, is something that is close to the heart of every hawaiian, and this battle even inspired me to go back to school and complete my master's degree, and I have begun a phd program at the university, the passion that has been stirred up within me as a result of this fight for our food for our people is something that I know and understand within my na'au that will never be extinguished.

In the words of my kupuna, James Kauli'a, "forever protest until the last aloha 'aina," although this was spoken in regards to annexation (which is another pressing issue today) I see the genetic modification of our food as yet another form of annexation and ursurpation. I will continue to resist, to fight for our identity as a people, which in this culture as with all, is expressed in the food that we eat.

na'u no me ke aloha 'aina mau a mau, na Pauahi Ho'okano

pauahi hookano 91-1084 Kauiki st ewa beach, HI 96706 Testimony In Support of Ban on GMO-Taro

Aloha mai kakou

I join communities across Hawaii in rejecting the genetic modification of all taro varieties, by supporting a ban on GMO-taro. I am deeply concerned about the unknown health risks, irreversible threats to native ecosystems, cultural disrespect, patenting and bioprospecting of Hawaii's natural resources and potential harms to our local farming economy that are associated with GMO-taro.

-Taro Deserves the Best Available Science-

GMO-taro is claimed to potentially reduce one type of taro disease in one variety of taro by creating irreversible, unnatural genetic mutations whose safety to consumers and the environment is not scientifically proven. GMO-taro has no proven benefits to taro farmers or consumers and is not the best available science needed to safely perpetuate taro farming and protect consumers in Hawaii. Better and safer options exist. Long-term scientific studies and farming practices throughout the Pacific have resulted in proven scientific techniques to expand the local taro industry, protect unique Hawaiian taro varieties, farmlands and watersheds-- without GMOs. These community-accepted practices include: organically improving soil health, establishing appropriate water-flow standards to prevent disease and pests, stopping imports of diseased taro and pests into Hawaii, and growing many traditional varieties of natural taro with different natural disease resistance. Being that safer science exists, there is no need or demand for experimental GMO-taro from local taro farmers or consumers.

-Health and Environmental Safety Concerns about GMO-Taro-

Taro is a nutritious food crop, especially cherished as a baby food and staple dish in Hawaii for centuries; and around the world as an important medicinal food for diabetes, cancer, autism and serious food allergies. Taro is the worlds only hypo-allergenic, or allergy-free, carbohydrate. GMO-taro, on the other hand, is not the same as natural taro. GMO-taro has never been in the human food supply before, and has NOT been scientifically tested on humans to prove that it is safe to eat. Moreover, the unnatural genetic mutations of GMO-taro can never be guaranteed to be hypo-allergenic, thus threatening consumers of this uniquely important medicinal food source. In fact, numerous scientific studies on laboratory animals show that GMOs can cause toxic, allergic, and even deadly reactions. Unnatural gene mutations introduced through GMO-taro may harm insects, birds, fish, and soil health. Risks and damages to Hawaii's people and lands could be irreversible.

-Community and Ethical Concerns about GMO-Taro-

Cultivated throughout centuries to be abundantly grown on Hawaii's diverse agricultural lands, taro is the sacred foundation of our unique local agriculture, society, traditions and family structure. Genetic modification of taro is an affront to the sacred Hawaiian tradition that respects the taro plant as a family member, an older brother to humanity. This family tradition is rooted in honoring the relationship of mankind with the very plants we depend on for healthy nourishment, and establishes an unique genealogical connection between taro and the Hawaiian people. The wisdom of such healthy community values must be encouraged, not disrespected or desecrated. Despite the unique and utmost importance of this plant to our community, GMO-taro has been developed without any

informed community consent, raising serious ethical science concerns. Businesses and researchers in Hawaii should encourage informed community consent and review, not avoid oversight and involvement from the very communities most effected by their activities.

-Economic and Bioprospecting Concerns about GMO-Taro-

The right to grow taro naturally and traditionally belongs to the public, and should never be owned by a corporation or university. Private patents and control of our public food resources would cripple our food security, taro economy and violate our inherent public rights. GMO-taro experiments and patents cannot help taro farmers with the real problems that they face and will only endanger the valuable traditional biodiversity of taro in Hawaii.

-Legal and Governance Concerns about Preemption Legislation-

In "exchange" for a ban on GMO-taro, the biotech/GMO industry may attempt to turn our community's intentions to protect taro into unfair "preemption" legislation which would prohibit state or county oversight, and public notice of all other GMOs and biotech activities in Hawaii. We do not support any such attempts to preempt legitimate local government regulations to protect public health. Preempting local efforts to protect public health raises serious legal, ethical, and scientific concerns-- our public and environmental safety, as well as our local-governance authority, must be prioritized over private investment concerns and high-risk experiments.

-Help Taro, Don't Hurt Taro!-

Agricultural science has proven that the taro will be as healthy as the land in which it is grown and the care with which it is shown. There is no actual need to permanently change the taro plant's natural genetic structure nor patent the plant for private profit in order to protect the local taro industry. Rather, farmers, scientists and decision makers must work to solve the broad resource management problems that face taro farming. Lack of meaningful support to address the drastically increasing challenges from invasive diseases, pests, excessive and illegal diversions of water, and operating costs, has led to a decrease in taro farming and a taro shortage in Hawaii. With appropriate political, scientific and community support, taro will once again be a primary resource for Hawaii's food security, contributing significantly to a healthy local diet and economy. GMO-taro and patents, however, could destroy the safety and sanctity of natural taro as an important allergy-free food, cultural resource and local agricultural industry in Hawaii.

As a strong supporter of taro farming in Hawaii, I ask you to protect the security of the health of natural taro and the local taro industry by establishing a ban on GMO-taro.

Malama Aina,

Eva Kapelaonaalii Collins 89-327 Palikea St. Wai?anae, HI 96792